首页> 外文期刊>Energy & fuels >Predicting Effects of Operating Conditions on Biomass Fast Pyrolysis Using Particle-Level Simulation
【24h】

Predicting Effects of Operating Conditions on Biomass Fast Pyrolysis Using Particle-Level Simulation

机译:使用粒子级模拟预测操作条件对生物质快速热解的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Fast pyrolysis of biomass materials is an effective means to convert biomass into useful energy products. The conversion process can be significantly affected by the properties of the biomass particle and the operating conditions. To obtain a better understanding of this process, a direct numerical simulation method was proposed and used to conduct particle-scale simulations. In this study, the lattice Boltzmann method was employed to solve the flow field and the intraparticle transport of heat and mass. A multistep pyrolysis kinetics mechanism was used to describe the chemical reactions that convert solid biomass tcr gaseous and solid products. The predicted evolutions of center temperature and solid mass fraction agreed 'well with the experimental data. The validation demonstrated that the present model was capable of revealing the detailed conversion process of biomass fast pyrolysis at the particle scale. Parametric studies were conducted to characterize the effects of particle size, particle aspect ratio, inlet gas temperature, and reactor wall temperature on the conversion time and final product yields. The numerical results showed that the conversion time increased as the particle size increased and decreased as the inlet gas temperature and reactor wall temperature increased. When the particle size was decreased, more tar and syngas were produced while less char was generated. The same trend offinalproduct yields was also found when the inlet gas temperature"and. reactor wall temperature were increased. The results also indicated that the temperature gradients inside the particle can be neglected under certain particle size, i.e., equal to or less than '0.2 mm under the conditions studied. The heat flux from the reactor wall was found, to be more significant to the fast pyrolysis process than the inlet gas temperature.
机译:生物质材料的快速热解是将生物质转化为有用的能源产品的有效手段。转化过程可能受到生物质颗粒的性质和操作条件的显着影响。为了更好地了解此过程,提出了一种直接数值模拟方法,并将其用于进行粒子尺度模拟。在这项研究中,采用格子Boltzmann方法求解流场以及热和质量在粒子内的传递。用多步热解动力学机理描述了将固态生物质转化为气态和固态产物的化学反应。中心温度和固体质量分数的预测变化与实验数据吻合得很好。验证表明,本模型能够揭示颗粒级生物质快速热解的详细转化过程。进行了参数研究,以表征粒径,粒径纵横比,入口气体温度和反应器壁温对转化时间和最终产物收率的影响。数值结果表明,转化时间随着粒径的增加而增加,随着进气温度和反应器壁温的增加而减小。当粒度减小时,产生更多的焦油和合成气,而产生更少的焦炭。当入口气体温度和反应器壁温度升高时,也发现了相同的最终产物收率趋势。结果还表明,在一定粒径(即等于或小于'0.2)下,颗粒内部的温度梯度可以忽略不计。在所研究的条件下,发现反应器壁的热通量比进口气体温度对快速热解过程的影响更大。

著录项

  • 来源
    《Energy & fuels》 |2017年第1期|635-646|共12页
  • 作者

    Pan Yaoyu; Kong Song-Charng;

  • 作者单位

    Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA;

    Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号