首页> 外文期刊>Energy & fuels >High-Pressure Methane Sorption on Dry and Moisture-Equilibrated Shales
【24h】

High-Pressure Methane Sorption on Dry and Moisture-Equilibrated Shales

机译:干湿平衡页岩上的高压甲烷吸附

获取原文
获取原文并翻译 | 示例
       

摘要

High-pressure methane sorption isotherms were collected on selected Paleozoic shales from the Sichuan Basin. Excess sorption measurements were performed on shales with varied water content (dry, moisture equilibrated at 33%, 53%, 7S%, and 97% relative humidities) at 39 degrees C and up to 25 MPa. Water uptake isotherms were collected at 24 C and parametrized by the Guggenheim Anderson de Boer (GAB) model. The effect of organic richness, mineral compositions, and pore structure characteristics on water uptake and methane sorption behavior has been investigated. The mechanism responsible for the decrease in methane sorption capacity of moisture-equilibrated shales is discussed. Water uptake of shales is primarily controlled by clay minerals, and shows a positive correlation with clay mineral content. Water sorption isotherms of shales can be approximately expressed as the sum of the isotherms of individual clay minerals on a mass-fraction base. Methane sorption capacity of these shales is controlled by TOC content. The maximum Langmuir sorption capacity of shales under both dry and 97% RH conditions correlates positively with TOC content. Compared to dry conditions, methane sorption capacity of shales moisture-equilibrated at 97% RH is reduced by 44% to 63%. The experimental results indicate a stepwise decline in methane sorption with increasing water content. Evolution of sorption capacity, as a function of water content can be divided into three stages: (1) initial decline stage where the decrease of methane sorption capacity is mainly due to competitive sorption of methane and water on hydrophilic clay minerals; (2) steep decline stage where clusters of water molecules block pore space and reduce the sorption capacity significantly; and (3) slow decline stage, where a contiguous water phase successively fills the macropores and slightly reduces methane sorption by volume displacement.
机译:在四川盆地的某些古生代页岩上收集了高压甲烷吸附等温线。在含水量变化(干燥,相对湿度分别在33%,53%,7S%和97%相​​对湿度下平衡)的页岩上于39摄氏度和最高25 MPa下进行了过量吸附测量。在24 C下收集吸水等温线,并通过古根海姆·安德森·德·波尔(GAB)模型进行参数化。研究了有机物丰富度,矿物质组成和孔隙结构特征对水分吸收和甲烷吸附行为的影响。讨论了造成水分平衡页岩甲烷吸附能力下降的机理。页岩的吸水率主要由粘土矿物控制,并且与粘土矿物含量呈正相关。页岩的吸水等温线可以近似表示为质量分数基础上单个粘土矿物的等温线之和。这些页岩的甲烷吸附能力受TOC含量控制。在干燥和相对湿度为97%的条件下,页岩的最大Langmuir吸附能力与TOC含量呈正相关。与干燥条件相比,在97%RH下水分平衡的页岩的甲烷吸附能力降低了44%至63%。实验结果表明,随着水含量的增加,甲烷的吸附量逐步降低。吸附能力随水分含量的变化可分为三个阶段:(1)初始下降阶段,甲烷吸附能力的下降主要是由于甲烷和水在亲水性粘土矿物上的竞争性吸附所致; (2)陡峭的下降阶段,其中水分子簇阻塞孔隙空间并显着降低吸附能力; (3)缓慢下降阶段,其中连续的水相连续填充大孔,并因体积置换而略微减少了甲烷的吸收。

著录项

  • 来源
    《Energy & fuels》 |2017年第1期|482-492|共11页
  • 作者单位

    China Univ Geosci, Key Lab Tecton & Petr Resources, Minist Educ, Wuhan 430074, Peoples R China|China Univ Petr, State Key Lab Petr Resources & Prospecting, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Geosci, Key Lab Tecton & Petr Resources, Minist Educ, Wuhan 430074, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Prospecting, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    Rhein Westfal TH Aachen, Inst Geol & Geochem Petr & Coal, Energy & Mineral Resources Grp EMR, Lochnerstr 4-20, D-52056 Aachen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号