...
首页> 外文期刊>Energy & fuels >Combined Experimental, Theoretical, and Molecular Simulation Approach for the Description of the Fluid-Phase Behavior of Hydrocarbon Mixtures within Shale Rocks
【24h】

Combined Experimental, Theoretical, and Molecular Simulation Approach for the Description of the Fluid-Phase Behavior of Hydrocarbon Mixtures within Shale Rocks

机译:实验,理论和分子模拟相结合的方法用于描述页岩中烃混合物的液相行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An experimental, theoretical, and molecular simulation consolidated framework for the efficient characterization of the adsorption and fluid-phase behavior of multi-component hydrocarbon mixtures within tight shale rocks is presented. Fluid molecules are described by means of a top-down coarse-grained model where simple Mie intermolecular potentials are parametrized by means of the statistical associating fluid theory. A four-component (methane, pentane, decane, naphthalene) mixture is used as a surrogate model with a composition representative of commonly encountered shale oils. Shales are modeled as a hierarchical network of nanoporous slits in contact with a mesoporous region. The rock model is informed by the characterization of four distinct and representative shale core samples through nitrogen adsorption, thermogravimetric analysis, and contact angle measurements. Experimental results suggest the consideration of two types of pore surfaces: a carbonaceous wall representing the kerogen regions of a shale rock, and an oxygenated wall representing the clay-based porosity. Molecular dynamics simulations are performed at constant overall compositions at a temperature of 398.15 K (257 degrees F) and explore pressures from 6.9 MPa up to 69 MPa (1000-10000 psi). Simulations reveal that it is the organic nanopores of 1 and 2 nm that preferentially adsorb the heavier components, while the oxygenated counterparts show little selectivity between the adsorbed and free fluid. Upon desorption, this trend is intensified, as the fluid phase in equilibrium with a carbon nanopore becomes increasing leaner (richer in light components) and almost completely depleted of the heavy components which remain trapped in the nanopores and surfaces of the mesopores. Oxygenated pores do not contribute to this unusual behavior, even for the very tight pores considered. The results presented elucidate the relative importance of considering both the pore size distribution and the heterogeneous nature of the confining surfaces when theoretically describing adsorption and transport of oil through shale rocks, and they provide a plausible explanation for the abnormal continuous leaning of shale gases seen during field production.
机译:提出了一个实验,理论和分子模拟的合并框架,用于有效表征致密页岩中多组分烃混合物的吸附和液相行为。通过自上而下的粗粒度模型描述流体分子,其中简单的Mie分子间电势通过统计缔合流体理论进行参数化。四组分(甲烷,戊烷,癸烷,萘)混合物用作替代模型,其组成代表了常见的页岩油。页岩被建模为与中孔区域接触的纳米孔缝的分层网络。通过氮气吸附,热重分析和接触角测量来表征四个不同的代表性页岩岩心样品,从而为岩石模型提供了依据。实验结果表明考虑了两种类型的孔隙表面:代表页岩岩石干酪根区域的碳质壁和代表基于粘土的孔隙度的氧化壁。分子动力学模拟是在398.15 K(257华氏度)的恒定总成分下进行的,探索的压力范围为6.9 MPa至69 MPa(1000-10000 psi)。模拟表明,优先吸附较重组分的是1和2 nm的有机纳米孔,而含氧的相应孔对吸附的流体和自由流体之间的选择性很小。解吸后,随着与碳纳米孔平衡的液相变得越来越稀(富含轻组分),几乎完全耗尽了残留在纳米孔和中孔表面的重组分,这种趋势更加强烈。即使考虑到非常紧密的毛孔,氧化毛孔也不会导致这种异常行为。提出的结果阐明了在理论上描述油在页岩中的吸附和输运时,同时考虑孔径分布和围护表面非均质性的相对重要性,并且它们为分析期间页岩气异常连续倾斜提供了合理的解释。现场生产。

著录项

  • 来源
    《Energy & fuels》 |2018年第5期|5750-5762|共13页
  • 作者单位

    Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England;

    Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England;

    Univ Concepcion, Dept Ingn Quim, Casilla 160-C, Concepcion, Chile;

    Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号