首页> 外文期刊>Energy & fuels >Influence of Adsorption and Capillary Pressure on Phase Equilibria inside Shale Reservoirs
【24h】

Influence of Adsorption and Capillary Pressure on Phase Equilibria inside Shale Reservoirs

机译:吸附和毛细管压力对页岩储层内相平衡的影响

获取原文
获取原文并翻译 | 示例
       

摘要

As a result of the small pore sizes and organic content of shale, capillary pressure and adsorption are two effects that should be taken into account in the study of phase equilibrium inside shale. The inclusion of both effects in the phase equilibrium modeling can shed light on how bulk phase composition inside the porous media changes with the temperature and pressure and how the phase equilibrium changes accordingly. In the long run, such a model can be used in reservoir simulation for more. complicated analysis. In this study, we present a calculation method that can effectively include adsorption and capillarity. We propose to introduce an excess adsorbed phase and treat the remaining substance inside the pores as a bulk phase (gas, liquid, or both) to make the mass balance formulation simpler. The adsorbed phase is modeled by the multicomponent Langmuir (ML) equation for its simplicity and computational efficiency. A more theoretical adsorption model, the multicomponent potential theory of adsorption, is used to determine the parameters of the simpler ML equation. The liquid and gas phases are described by the Peng Robinson equation of state, and the capillary pressure across their interface is taken into account. A flash algorithm by alternately updating the adsorbed phase amount and the fugacities in the bulk phases has been developed. The flash algorithm is used to analyze some representative systems (from binary, ternary, to low- and high-gas/oilratio model reservoir fluid systems) for the phase equilibrium inside porous media. The results show that adsorption and capillary pressure can significantly change the bulk phase composition and, thus, its corresponding phase envelope. Because the adsorption varies at different temperature and pressure conditions, the extent of change in the phase envelope is different. In general, a very shrunk phase envelope with a shifted critical point is observed. The heavier components are preferentially adsorbed in the whole pressure and temperature range studied here. At high pressure and low temperature, the selectivity toward heavier components is moderate in comparison to that at low pressure and high temperature. The adsorption effects are stronger for the gas bulk phase region, leading to bigger changes in the gas phase composition and the shift of the dew point curve. Pressure, volume, and temperature simulations of two model reservoir fluid systems show significant change in the results when capillary pressure and adsorption are included.
机译:由于页岩的小孔径和有机物含量小,毛细压力和吸附是研究页岩内部相平衡的两个因素。在相平衡模型中包含这两种效应可以阐明多孔介质内部的本体相组成如何随温度和压力而变化以及相平衡如何相应地变化。从长远来看,这种模型可以用于更多的油藏模拟中。复杂的分析。在这项研究中,我们提出了一种可以有效地包括吸附和毛细作用的计算方法。我们建议引入过量的吸附相,并将孔内的剩余物质视为整体相(气体,液体或两者),以简化质量平衡配方。吸附相通过多组分Langmuir(ML)方程进行建模,以简化操作并提高计算效率。更为理论化的吸附模型,即吸附的多组分势理论,用于确定较简单的ML方程的参数。液相和气相由彭·鲁宾逊状态方程描述,并考虑了跨其界面的毛细管压力。已经开发了通过交替更新吸附相量和本体相中的逸度的快速算法。闪速算法用于分析一些代表性系统(从二元,三元到低/高气/油比模型油藏流体系统),以实现多孔介质内部的相平衡。结果表明,吸附和毛细管压力可以显着改变整体相组成,从而改变其相应的相包络。由于吸附在不同的温度和压力条件下会发生变化,因此相包络的变化程度会有所不同。通常,观察到非常收缩的临界包络,其临界点已移动。较重的组分优先吸附在此处研究的整个压力和温度范围内。与在低压和高温下相比,在高压和低温下对较重组分的选择性中等。气相主体区域的吸附效果更强,导致气相组成的较大变化和露点曲线的移动。当包括毛细管压力和吸附时,两个模型储层流体系统的压力,体积和温度模拟显示了结果的显着变化。

著录项

  • 来源
    《Energy & fuels》 |2018年第3期|2819-2833|共15页
  • 作者单位

    Tech Univ Denmark, CERE, Dept Chem, DK-2800 Lyngby, Denmark;

    Tech Univ Denmark, CERE, Dept Chem, DK-2800 Lyngby, Denmark;

    Tech Univ Denmark, CERE, Dept Chem Engn, DK-2800 Lyngby, Denmark;

    Tech Univ Denmark, CERE, Dept Chem, DK-2800 Lyngby, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号