首页> 外文期刊>Energy & Fuels >Experimental Determination of the Rate Constants of the n-C_(25) Thermal Cracking at 120, 400, and 800 bar: Implications for High-Pressure/High-Temperature Prospects
【24h】

Experimental Determination of the Rate Constants of the n-C_(25) Thermal Cracking at 120, 400, and 800 bar: Implications for High-Pressure/High-Temperature Prospects

机译:在120、400和800 bar压力下n-C_(25)热裂解速率常数的实验确定:对高压/高温前景的启示

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this work is to determine the apparent rate constants for the n-C_(25) thermal cracking and, then, to study pressure effect on these rate constants so as to evaluate n-alkane stability in high-pressure/high-temperature deep prospects. Pyrolyses were carried out in anhydrous closed system (gold vessels) during times ranging from 1 to 360 h under isothermal conditions (325-425℃) and various pressures (120, 400, and 800 bar) in the range of those occurring in petroleum systems. Results show that degradation of n-C_(25) follows a first-order kinetics under isothermal conditions at 120 bar. The main chemical class produced along increasing severity is the saturated hydrocarbons ranging from C_(10) to C_(22) (80 wt %). The gas contribution is very low ( < 2 wt %) up to 85 wt % conversion. On the basis of the linearity of the Arrhenius plot, accurate kinetic parameters were calculated (E = 68.2 kcal/mol and A = 6.1 x 10~(17) s~(-1)). An extrapolation of these kinetic parameters to geological conditions shows that n-C_(25) begins to be measurably degraded above 180℃ for residence times higher than 10 million years. This means that a reservoired oil enriched in n-alkanes will be stable in very high temperature conditions. When this oil begins to degrade, condensate is mainly produced and will be measurably degraded only above 200℃ during similar residence times. Pressure effect increases the thermal degradation rate of n-C_(25) between 120 and 400 bar then decreases it between 400 and 800 bar down to its value at 120 bar. These results are in a good agreement with those already published (Fabuss, B. M.; et al. In Advances in Petroleum Chemistry and Refining; Me Ketta, J., Jr., Ed.; Wiley and Sons: New York, 1964; Vol. 5, Chapter 4, pp 156-201) for thermal degradation of n-C_6 and n-C_7 saturated hydrocarbons in the same range of pressure. Nevertheless, the relative increase of the degradation rate for n-C_(25) reaching a maximum around 1.7 for 400 bar, i.e., for an average depth of 4000 m and a temperature of 140℃, the pressure effect is not sufficient to allow a measurable degradation in these geological conditions.
机译:这项工作的目的是确定n-C_(25)热裂解的表观速率常数,然后研究压力对这些速率常数的影响,以便评估高压/高温下正构烷烃的稳定性。前景广阔。在等温条件(325-425℃)和各种压力(120、400和800 bar)下(在石油系统中发生的情况下),在无水密闭系统(金罐)中进行热解的时间为1-360小时。结果表明,n-C_(25)的降解遵循等温条件下在120 bar下的一级动力学。随着严重程度的提高,产生的主要化学类别是从C_(10)到C_(22)(80 wt%)的饱和烃。高达85 wt%的转化率时,气体贡献非常低(<2 wt%)。根据Arrhenius图的线性,计算出准确的动力学参数(E = 68.2 kcal / mol和A = 6.1 x 10〜(17)s〜(-1))。将这些动力学参数外推至地质条件表明,对于超过1000万年的停留时间,n-C_(25)在180℃以上开始可降解。这意味着富含正构烷烃的储油在高温条件下将保持稳定。当该油开始降解时,主要会产生凝析油,并且只有在相似的停留时间下,只有在200℃以上才可测量地降解。压力效应会增加n-C_(25)在120至400 bar之间的热降解率,然后将其在400至800 bar之间降低至120 bar的值。这些结果与已经发表的结果(Fabuss,BM;等人,《石油化学和精炼进展》; Me Ketta,J.,Jr。,编辑; Wiley and Sons:纽约,1964; Vol。 5,第4章,第156-201页)用于在相同压力范围内对n-C_6和n-C_7饱和烃进行热降解。然而,n-C_(25)的降解速率的相对增加在400 bar时约为1.7,即平均深度为4000 m,温度为140℃时,压力效应不足以允许在这些地质条件下可测量的退化。

著录项

  • 来源
    《Energy & Fuels》 |1996年第4期|p.932-940|共9页
  • 作者

    F. Behar; M. Vandenbroucke;

  • 作者单位

    Geochemistry Department, IFP, 1-4 Avenue de Bois Preau, 92506 Rueil-Malmaison Cedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TK-;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号