...
首页> 外文期刊>Energy & fuels >Well Injectivity during CO_2 Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects
【24h】

Well Injectivity during CO_2 Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects

机译:在CO_2 GeoseQuestration期间的注射率:对水力 - 物理,化学和地质力学效应的审查

获取原文
获取原文并翻译 | 示例
           

摘要

Deep saline aquifers are among the most favorable geological sites for short- and long-term carbon geosequestration. Injection of CO2 into aquifers causes various hydro-physical, chemical, and geomechanical interactions that affect the injectivity of wellbores. Despite the extensive research conducted on carbon capture and storage (CCS), there exists a lack of focus on the concept of injectivity. The present study aims to identify the gaps by reviewing the major factors contributing to CO2 injectivity in deep saline aquifers. Moreover, the existing analytical and numerical mathematical models to estimate maximum sustainable injection pressure and pressure build-up are critically reviewed. Concerning the analytical models, the main controversies are related to the general shape of the CO2-brine interface that stems from neglecting or assuming CO2 compressibility, mutual solubility of CO2 and water, and drying-out effects. Besides, the models predicting waterflooding processes cannot accurately evaluate the injectivity of CO2 due to the unique features of CO2. Furthermore, most models have concentrated on CO2 storage capacity at the reservoir scale and not on wellbore injectivity. Thermo-poro-elastic effects influencing the in situ stresses and constraining the maximum sustainable injection pressures are also neglected in some cases. Despite the numerous numerical modeling workflows or tools, some mechanisms have not yet gained the desired attention, especially the chemical aspects of CO2-rich brine. Finally, while the field data demonstrate the applicability of CO2 geosequestration in saline aquifers, regular wellbore injectivity monitoring and surveillance is deemed necessary.
机译:深盐含水层是短期和长期碳地球曲线的最有利地质遗址之一。将CO2注射到含水层中会导致各种水力 - 物理,化学物质和地质力学相互作用,这会影响Wellbores的注射。尽管对碳捕获和储存(CCS)进行了广泛的研究,但缺乏关注的注射效果。本研究旨在通过审查有助于在盐水含水层中有助于二氧化碳的主要因素来识别差距。此外,估计最大可持续注射压力和压力积聚的现有分析和数值数学模型得到了重视。关于分析模型,主要争议与二氧化碳界面的一般形状有关,其源于忽略或假设CO 2可压缩性,CO 2和水的相互溶解度以及干燥效应。此外,预测水落过程的模型不能准确地评估二氧化碳的注射性,因为CO 2的独特特征。此外,大多数模型集中在储层规模上的二氧化碳储存能力上,而不是在井眼注射率上。在某些情况下,影响原位应力和约束最大可持续注射压力的热孔弹性效果也忽略了。尽管有许多数值建模工作流程或工具,但一些机制尚未获得​​所需的注意力,特别是CO2富含盐水的化学方面。最后,虽然现场数据表明了盐水含水层中CO2地球骨折的适用性,但必要地认为是普遍的井眼重新注射监测和监测。

著录项

  • 来源
    《Energy & fuels》 |2021年第11期|9240-9267|共28页
  • 作者单位

    Hakim Sabzevari Univ Sch Petr & Chem Engn Sabzevar Khorasan Razavi Iran;

    Univ Adelaide Australian Sch Petr & Energy Resources Adelaide SA 5000 Australia;

    Univ Adelaide Australian Sch Petr & Energy Resources Adelaide SA 5000 Australia;

    Sharif Univ Technol Dept Chem & Petr Engn Tehran Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号