首页> 外文期刊>Energy & fuels >One-Pot Synthesis of Novel Molybdenum Disulfide-Graphene Oxide Nanoarchitecture: An Impeccable Bifunctional Electrode for the Electrochemical Performance of Iron Redox Flow Batteries and Oxygen Evolution Reaction
【24h】

One-Pot Synthesis of Novel Molybdenum Disulfide-Graphene Oxide Nanoarchitecture: An Impeccable Bifunctional Electrode for the Electrochemical Performance of Iron Redox Flow Batteries and Oxygen Evolution Reaction

机译:一种新型钼二硫化石墨烯氧化物结构的单壶合成:一种可缺可可粘接的双官能电极,用于铁氧化还原电池的电化学性能和氧气进化反应

获取原文
获取原文并翻译 | 示例
           

摘要

The stable flower-like layered structure of molybdenum disulfide (MoS2)-graphene oxide (GO) nanocomposites was synthesized by a one-pot hydrothermal process. The novel nanoarchitecture of MoS2-GO nanocomposites acts as an electrocatalyst in multifunctional electrochemical performance. The distribution and morphological studies for MoS2-GO nanocomposites were analyzed via X-ray diffraction, energy-dispersive X-ray analysis, scanning electron microscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy analysis. Modified graphite felt (MGF) electrodes were developed using a spray-coating process to uniformly distribute MoS2-GO nanocomposites on graphite felt. The 1 mg cm(-2) MGF electrode showed the best electrochemical activity and electrochemical reversibility toward the redox couples of the iron(II) electrolyte, as indicated in electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel plots; this may be due to the presence of sulfur and oxygen heteroatom layers of the MoS2-GO nanocomposites, which are more actively participated in the charge transfer redox reactions of the iron(II) electrolyte. Iron redox flow battery performance with an active area of 132 cm(2) was found to be 99.95% of coulombic efficiency (eta(c)), with a corresponding peak power density of 75.60 mW cm(-2). Furthermore, in 1.0 M KOH, MoS2-GO nanocomposites demonstrate effective electrocatalysis for the oxygen evolution reaction (OER). The complete catalytic impact of MoS2-GO nanocomposites toward the OER was investigated. The MoS2-GO nanocomposites show an overpotential of 1.49 V (recorded at. of 10) and a Tafel slope of 381 mV dec(-1) and remain stable after 20 h of chronoamperometry in 1.0 M KOH. The OER activity of MoS2-GO nanocomposites was found to be significantly higher than that of the bare screen-printed electrode and MoS2.
机译:通过单罐水热法合成钼二硫化钼(MOS2)型氧化物(GO)纳米复合材料的稳定的花状层状结构。 MOS2-GO-GOOM复合材料的新型纳米建筑用作多功能电化学性能的电催化剂。通过X射线衍射,能量 - 分散X射线分析,扫描电子显微镜,Brunauer-Emmett-erker和X射线光电子能谱分析分析MOS2-GO纳米复合材料的分布和形态学研究。使用喷涂方法开发改进的石墨毡(MGF)电极,以在石墨毡上均匀地分布MOS2-GO纳米复合材料。如电化学阻抗谱,循环伏安法和Tafel图所示,1mg cm(-2)MgF电极显示出最佳的电化学活性和朝向铁(II)电解质的氧化还原耦合的电化学可逆性;这可能是由于MOS2-GO纳米复合材料的硫和氧杂原子层的存在,这更积极地参与铁(II)电解质的电荷转移氧化还原反应。铁氧化铁流量电池性能具有132厘米(2)的有效面积为99.95%的库仑效率(ETA(C)),相应的峰值功率密度为75.60mW cm(-2)。此外,在1.0M KOH中,MOS2-GO纳米复合材料表明了氧气进化反应(oer)的有效电致分析。研究了MOS2-GO-GO纳米复合材料的完全催化撞击朝向伊尔。 MOS2-GO纳米复合材料显示出1.49 V(记录在10)的过电位和381mV(-1)的Tafel斜率,并在1.0 m KOH中的计时率20小时后保持稳定。发现MOS2-GO纳米复合材料的OER活性显着高于裸露屏幕印刷电极和MOS2的活动。

著录项

  • 来源
    《Energy & fuels》 |2021年第9期|8345-8357|共13页
  • 作者单位

    Jyothy Inst Technol Ctr Incubat Innovat Res & Consultancy CIIRC Bangalore 560082 Karnataka India|Visvesvaraya Technol Univ Res Resource Ctr Belagavi 590018 Karnataka India;

    Jyothy Inst Technol Ctr Incubat Innovat Res & Consultancy CIIRC Bangalore 560082 Karnataka India|Visvesvaraya Technol Univ Res Resource Ctr Belagavi 590018 Karnataka India;

    Dayananda Sagar Univ Dept Chem Bangalore 560068 Karnataka India;

    Dayananda Sagar Univ Dept Chem Bangalore 560068 Karnataka India;

    Jyothy Inst Technol Dept Chem Bangalore 560083 Karnataka India;

    Jyothy Inst Technol Ctr Incubat Innovat Res & Consultancy CIIRC Bangalore 560082 Karnataka India;

    Jain Univ Sch Engn & Technol Dept Chem Bangalore 562112 Karnataka India;

    Jyothy Inst Technol Ctr Incubat Innovat Res & Consultancy CIIRC Bangalore 560082 Karnataka India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号