...
首页> 外文期刊>Energy & fuels >Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio
【24h】

Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio

机译:氨/甲烷/空气预混火焰的结构和层状火焰速度在不同的压力和等效率下

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a joint experimental and numerical study on premixed laminar ammonia/methane/air flames, aiming to characterize the flame structures and NO formation and determine the laminar flame speed under different pressure, equivalence ratio, and ammonia fraction in the fuel. The experiments were carried out in a lab-scale pressurized vessel with a Bunsen burner installed with a concentric co-flow of air. Measurements of NH and NO distributions in the flames were made using planar laser-induced fluorescence. A novel method was presented for determination of the laminar flame speed from Bunsen-burner flame measurements, which takes into account the non-uniform flow in the unburned mixture and local flame stretch. NH profiles were chosen as flame front markers. Direct numerical simulation of the flames and one-dimensional chemical kinetic modeling were performed to enhance the understanding of flame structures and evaluate three chemical kinetic mechanisms recently reported in the literature. The stoichiometric and fuel-rich flames exhibit a dual-flame structure, with an inner premixed flame and an outer diffusion flame. The two flames interact, which affects the NO emissions. The impact of the diffusion flame on the laminar flame speed of the inner premixed flame is however minor. At elevated pressures or higher ammonia/methane ratios, the emission of NO is suppressed as a result of the reduced radical mass fraction and promoted NO reduction reactions. It is found that the laminar flame speed measured in the present experiments can be captured by the investigated mechanisms, but quantitative predictions of the NO distribution require further model development.
机译:本文介绍了对预混层氨/甲烷/空气火焰的联合实验和数值研究,旨在表征火焰结构和不形成并确定燃料中不同压力,等效比和氨级别下的层状火焰速度。实验在实验室规模的加压容器中进行,其中Bunsen燃烧器安装有同心的空气流量。使用平面激光诱导的荧光进行NH的测量和火焰中的分布。提出了一种新的方法,用于测定来自Bunsen-燃烧器火焰测量的层状火焰速度,这考虑了未燃烧混合物和局部火焰拉伸中的不均匀流动。选择NH型材作为火焰前标记。进行了火焰和一维化学动力学建模的直接数值模拟,以增强对火焰结构的理解,并评估文献中最近报道的三种化学动力学机制。化学计量和富含燃料的火焰具有双火焰结构,内部预混火焰和外扩散火焰。这两个火焰互动,影响了没有排放。然而,扩散火焰对内膜预混火焰的层状火焰速度的影响是较小的。在升高的压力或更高的氨/甲烷比例下,由于降低的自由基质量分数并促进了不降低反应,抑制了NO的发射。结果发现,在本实验中测量的层状火焰速度可以通过调查的机制捕获,但无分配的定量预测需要进一步的模型发展。

著录项

  • 来源
    《Energy & fuels》 |2021年第9期|7179-7192|共14页
  • 作者单位

    Lund Univ Div Fluid Mech S-22100 Lund Sweden|Univ Lisbon Inst Engn Mecan IDMEC Inst Super Tecn IST P-1049001 Lisbon Portugal;

    Lund Univ Div Fluid Mech S-22100 Lund Sweden|Tianjin Univ State Key Lab Engines Tianjin 300350 Peoples R China;

    Lund Univ Div Fluid Mech S-22100 Lund Sweden;

    Lund Univ Div Fluid Mech S-22100 Lund Sweden;

    Univ Lisbon Inst Engn Mecan IDMEC Inst Super Tecn IST P-1049001 Lisbon Portugal;

    Lund Univ Div Combust Phys S-22100 Lund Sweden;

    Lund Univ Div Combust Phys S-22100 Lund Sweden;

    Lund Univ Div Combust Phys S-22100 Lund Sweden;

    Lund Univ Div Combust Phys S-22100 Lund Sweden;

    Lund Univ Div Combust Phys S-22100 Lund Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号