首页> 外文期刊>Energy & fuels >Flame Propagation Velocity for Co-combustion of Pulverized Coals and Gas Fuels
【24h】

Flame Propagation Velocity for Co-combustion of Pulverized Coals and Gas Fuels

机译:用于煤气和气体燃料的共燃烧的火焰传播速度

获取原文
获取原文并翻译 | 示例
           

摘要

A model was developed to evaluate the flame propagation velocity for co-combustion of pulverized coals and gas fuels such as ammonia, methane, hydrogen, and other fuels. For coal combustion, the maximum flame propagation velocity increased when the particle diameter decreased or the volatile content increased. The limit value of the maximum flame propagation velocity was extrapolated to zero particle diameter and 100% volatile matter (VM) content. The value became equivalent to the maximum flame propagation velocity of hydrocarbon fuels such as methane. However, the flame propagation velocity of coal was usually lower than that of gas fuels due to the delay of pyrolysis reactions. Also, residual solid particles (ash, char, and VM that have not been pyrolyzed yet) might slow down the gas combustion reactions. A model was developed to evaluate the flame propagation velocity for co-combustion. Previously, a model had been developed for solid fuels with diameter distribution. A weighting factor had been introduced to represent the contribution of each particle diamter. The factor had been the ratio of the number of particles. For gas fuels, instead of the number of particles, the weighting factor was expressed as a function of the equivalence ratio and the burning velocity of gas fuels. The flame propagation velocities were analyzed for co-combustion of coal–methane and coal–ammonia. The calculated results could reproduce the characteristics of the experimental results. Very recently, experimental results for coal–ammonia have been reported by Hadi et al. The flame propagation velocity for co-combustion was larger than the maximum value when ammonia or coal burned alone. This phenomenon was not observed for co-combustion of coal–methane. This phenomenon could be reproduced by the present calculation. The present model is useful for the design and development of burners for solid–gas co-combustion.
机译:开发了一种模型,以评估粉碎煤和气体燃料的共燃烧的火焰传播速度,例如氨,甲烷,氢气和其他燃料。对于煤燃烧,当粒径降低或增加挥发性含量时,最大火焰传播速度增加。最大火焰传播速度的极限值外推至零粒径和100%挥发物质(VM)含量。该值相当于烃燃料如甲烷的最大火焰传播速度。然而,由于热解反应的延迟,煤的火焰繁殖速度通常低于气体燃料的燃料。此外,尚未热解的残留固体颗粒(灰,炭和VM)可能会减缓气体燃烧反应。开发了一种模型以评估用于共燃烧的火焰传播速度。以前,已经为具有直径分布的固体燃料开发了一种模型。已经引入了加权因子来表示每个粒子直径的贡献。该因素是颗粒数量的比例。对于气体燃料,代替颗粒的数量,加权因子用作等效率和气体燃料的燃烧速度的函数表示。分析了火焰繁殖速度以用于煤 - 甲烷和煤氨的共燃烧。计算结果可以再现实验结果的特征。最近,Hadi等人报告了煤氨的实验结果。用于共燃烧的火焰繁殖速度大于单独燃烧氨或煤时的最大值。对于煤甲烷的共燃烧,未观察到这种现象。本现象可以通过本计算来再现。本模型可用于设计和开发用于固液共燃烧的燃烧器。

著录项

  • 来源
    《Energy & fuels》 |2021年第7期|6305-6314|共10页
  • 作者

    Masayuki Taniguchi;

  • 作者单位

    Hitachi-naka Chemical System Laboratory;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号