...
首页> 外文期刊>Energy & fuels >g-C_3N_4/α-Fe_2O_3 Supported Zero-Dimensional Co_3S_4 Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production
【24h】

g-C_3N_4/α-Fe_2O_3 Supported Zero-Dimensional Co_3S_4 Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production

机译:G-C_3N_4 /α-FE_2O_3支持的零维CO_3S_4纳米颗粒形式S-方案异质结光催化剂,用于高效氢气生产

获取原文
获取原文并翻译 | 示例

摘要

It is still a great challenge to develop photocatalysts with high efficiency and low cost to reach the scale of industrialization. In this work, we prepared an S-type heterojunction photocatalyst with Co3S4 nanoparticles supported on g-C3N4/alpha-Fe2O3. Characterizations, such as PL, UV-vis, electrochemical impedance spectroscopy, and linear sweep voltammetry, proved that the composite material had excellent photoelectrochemical performance and good stability. The hydrogen evolution amount of g-C3N4/alpha-Fe2O3/Co3S4 is as high as 191.41 mu mol, which is about 30 times that of pure Co3S4 (6.38 mu mol). The improvement performance of a composite material could be attributed to the following points: the EY molecules not only increase the light absorption rate of the samples but also act as electron donors; the highly dispersed Co3S4 nanoparticles provide a large number of reduction sites; and the constructed S-scheme heterojunction consumes useless electrons and holes in the hydrogen production system and utilizes the strong redox potential of the composite material to promote the separation of photogenerated carriers. In particular, Co3S4 nanoparticles with different degrees of dispersion were prepared by changing the preparation sequence of the composite catalyst. The design ideas of this experiment can provide an effective reference for the synthesis of efficient and stable multiple photocatalyst systems.
机译:以高效率和低成本开发光催化剂达到工业化规模仍然是一个巨大的挑战。在这项工作中,我们制备了S型异质结光催化剂,其具有CO3S4纳米颗粒在G-C3N4 /α-Fe 2 O 3上负载。如PL,UV-VI,电化学阻抗光谱和线性扫描伏安法,如PL,UV-Vis,电化学阻抗伏安,证明了复合材料具有优异的光电化学性能和良好的稳定性。 G-C3N4 /α-Fe2O3 / CO3S4的氢演化量高达191.41μmmol,为纯CO3S4(6.38μmol)的约30倍。复合材料的改善性能可能归因于以下几点:EY分子不仅增加样品的光吸收率,还可以作为电子供体;高度分散的CO3S4纳米颗粒提供大量的还原位点;并且所构造的S-schement异质结消耗了氢生产系统中的无用电子和孔,并利用复合材料的强氧化还原电位来促进光生载体的分离。特别地,通过改变复合催化剂的制备序列来制备具有不同分散体的CO3S4纳米颗粒。该实验的设计思想可以为合成有效且稳定的多光催化剂系统提供有效参考。

著录项

  • 来源
    《Energy & fuels》 |2021年第1期|856-867|共12页
  • 作者

    Yan Teng; Liu Hua; Jin Zhiliang;

  • 作者单位

    North Minzu Univ Sch Chem & Chem Engn Ningxia Key Lab Solar Chem Convers Technol Yinchuan 750021 Ningxia Peoples R China|North Minzu Univ Key Lab Chem Engn & Technol State Ethn Affairs Commiss Yinchuan 750021 Ningxia Peoples R China;

    North Minzu Univ Sch Chem & Chem Engn Ningxia Key Lab Solar Chem Convers Technol Yinchuan 750021 Ningxia Peoples R China|North Minzu Univ Key Lab Chem Engn & Technol State Ethn Affairs Commiss Yinchuan 750021 Ningxia Peoples R China;

    North Minzu Univ Sch Chem & Chem Engn Ningxia Key Lab Solar Chem Convers Technol Yinchuan 750021 Ningxia Peoples R China|North Minzu Univ Key Lab Chem Engn & Technol State Ethn Affairs Commiss Yinchuan 750021 Ningxia Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号