首页> 外文期刊>Energy & fuels >Shale Gas Transport in Nanopores: Contribution of Different Transport Mechanisms and Influencing Factors
【24h】

Shale Gas Transport in Nanopores: Contribution of Different Transport Mechanisms and Influencing Factors

机译:纳米孔的页岩气运输:不同运输机制的贡献和影响因素

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The classical Darcy’s law cannot effectively describe the microscopic flow rules of shale gas. In addition, conducting gas transport experiments in nanopores is difficult, and the correctness of the simulation results is not guaranteed. Studies on the flow and transmission of shale gas in microscopic nanopores can effectively guide the macroscopic numerical simulation of shale gas reservoirs, which is of great significance to the economical and efficient development of such reservoirs. In this work, the dimensionless relaxation time expression is modified, and the Peng–Robinson equation of state (P–R EOS) is introduced to the microscale gas flow lattice Boltzmann model. The influences of viscous flow, slippage effect, boundary Knudsen layer, adsorbed gas layer, and surface diffusion are considered, and the results are combined with the real isothermal adsorption experimental data of shale samples collected from the Longmaxi formation in Sichuan Basin. Finally, the contributions of various transport mechanisms to shale gas flow in nanopores and their influencing factors are studied. Results show that the gas velocity and mass flux (iQ ) obtained using the ideal gas EOS are higher than those obtained using P–R EOS under high pressure. When the effective pore diameter (iH _(e)) is less than 5 nm, surface diffusion and its induced free flow are the main transport mechanisms of shale gas flow in nanopores. Viscous flow becomes the main transport mechanism when iH _(e) exceeds 20 nm. iH _(e), pressure, and shale adsorption capacity significantly affect the contribution rate of each transport mechanism to the total iQ of shale gas. By comparison, the influence of temperature on the iQ of shale gas is relatively small and can be neglected under high pressure.
机译:古典达西法律不能有效地描述页岩气的微观流动规则。此外,难以保证纳米孔中的气体运输实验,并且无法保证模拟结果的正确性。微观纳米孔中页岩气的流动和传递的研究可以有效地引导页岩气藏的宏观数值模拟,这对这种储层的经济有效发展具有重要意义。在这项工作中,修改了无量纲的弛豫时间表达,并将状态(P-R EOS)的彭罗宾逊方程(P-R EOS)引入微观气体流动格子Boltzmann模型。考虑了粘性流动,滑动效应,边界骑士层,吸附气体层和表面扩散的影响,结果与从四川盆地龙曼氏植物形成收集的页岩样品的真实等温吸附实验数据。最后,研究了各种运输机制对纳米孔中的页岩气流及其影响因素的贡献。结果表明,使用理想的气体EOS获得的气体速度和质量通量( Q)高于在高压下使用P-R EOS获得的气体通量( Q)。当有效孔径( H _(e))小于5nm时,表面扩散及其诱导的自由流动是纳米孔中页岩气流的主要传输机制。当 H _(e)超过20nm时,粘性流动变为主要传输机制。 H _(e),压力和页岩吸附容量显着影响每种传输机制的贡献率到页岩气的总 q。相比之下,温度对岩石气体Q的影响相对较小,在高压下可以忽略。

著录项

  • 来源
    《Energy & fuels》 |2021年第3期|2033-2047|共15页
  • 作者单位

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University;

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University;

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University;

    Sichuan Changning Natural Gas Development Company Limited;

    Shale Gas Institute of PetroChina Southwest Oil & Gasfield Company;

    Baikouquan Oil Production Plant of PetroChina Xinjiang Oilfield Company;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号