首页> 外文期刊>Energy & fuels >Injection of Nanofluids with Fluorosurfactant-Modified Nanoparticles Dispersed in a Flue Gas Stream at Very Low Concentration for Enhanced Oil Recovery (EOR) in Tight Gas-Condensate Reservoirs
【24h】

Injection of Nanofluids with Fluorosurfactant-Modified Nanoparticles Dispersed in a Flue Gas Stream at Very Low Concentration for Enhanced Oil Recovery (EOR) in Tight Gas-Condensate Reservoirs

机译:用含氟表面活性剂改性的纳米颗粒注射含有烟雾气流的含氟型纳米颗粒,以极低的浓度,用于在狭窄的气凝胶储存器中增强储存(EOR)

获取原文
获取原文并翻译 | 示例
       

摘要

The main objective of this work is to evaluate the effect of nanofluids formed by surface-modified nanoparticles with a fluorosurfactant dispersed in a flue gas stream at low concentrations as an enhanced oil recovery (EOR) process applied to a tight gas-condensate reservoirs (TGCR). This research is a continuation of our previous study (doi.org/10.1021/acsami.9b22383) in which nanoparticles of gamma-Al2O3 and MgO modified with a short-chain fluorinated anionic surfactant (SY) at 30% by weight were developed. Here, the nanomaterials were used for preparing nanofluids (NF) at different concentrations to improve the mobility of the liquids in TGCR. Contact angle tests under high-pressure and high-temperature (HPHT) conditions were performed from 5 to 276 bar and at a constant temperature of 80 degrees C through the sessile drop technique to select the best nanofluid that generates a gas-wettability for EOR operations. Interfacial tension (IFT) measurements at high pressure (276 bar) and high temperature (80 degrees C) were also conducted to determine the selectivity of nanofluids to locate at the rock-fluid interface. The nanoparticles with superior performance were further evaluated through coreflooding tests at reservoir conditions of overburden pressure of 448 bar, pore pressure of 276 bar, and a temperature of 80 degrees C in a tight sandstone outcrop. The best results found for the contact angle and IFT at HPHT were obtained for the nanofluid of gamma-alumina nanoparticles functionalized with fluorosurfactant at 30% by weight (AlSY30) dispersed in water at a concentration of 300 mg.L-1 (AlSY30-NF). The contact angle results obtained at reservoir conditions at 276 bar and 80 degrees C were 122 +/- 2 degrees and 119 +/- 1 degrees for water and oil, respectively. Also, IFT tests showed the preference of these nanofluids to be located at the rock-fluid interface and thus generate greater performance from the injected treatments to modify the rock wettability. These results are supported by a more than 95% increase in the energy binding to the oil/brine (Delta E) interface of AlSY30 nanoparticles than MgSY30 nanoparticles. A novel coreflooding test was performed by dispersing the nanofluid at different concentrations (from 0 to 300 mg.L-1) in a flue gas stream. A low concentration of 10 mg.L-1 resulted in a residual oil saturation (Sor) reduction of 57% and an increase in oil recovery of approximately 23% relative to the flue gas in the absence of nanofluid. A synergistic effect between a wettability alteration and a decrease in IFT occurred due to nanofluid dispersal in the flue gas stream. The results obtained in this study are expected to promote innovative and efficient technology for dispersed nanofluid injection as a recovery method in tightly condensed gas fields with excellent performance at low concentrations.
机译:本作作品的主要目的是评价由表面改性纳米颗粒形成的纳米流体与分散在低浓度的烟道气流中的含氟表面活性剂,作为施加到紧的气凝胶储存器(TGCR)的增强的储存(EOR)工艺(TGCR )。该研究是我们以前的研究(Doi.org/10.1021/Acsami.9b22383)的延续,其中开发了以30重量%的短链氟化阴离子表面活性剂(SY)改性的γ-Al2O3和MgO的纳米粒子。这里,纳米材料用于在不同浓度下制备纳米流体(NF)以改善TGCR中液体的迁移率。高压和高温(HPHT)条件下的接触角测试从5至276巴,并通过无柄液滴技术在80℃的恒定温度下进行,选择最佳的纳米流体,为EOR操作产生气体润湿性。还进行了高压(276巴)和高温(80℃)的界面张力(IFT)测量以确定纳米流体在岩石流体界面处定位的选择性。通过在448巴的储层压力的储层条件下的储层条件下的储层条件,276巴的孔隙压力和紧密砂岩露头的温度,进一步评估具有优异性能的纳米颗粒。在浓度为300mg.L-1的含量分散在水中的含氟表面活性剂(ALSY30-NF )。在276巴的储液条件下获得的接触角结果分别为276℃和80℃,分别为122 +/- 2度,水和油分别为119 +/- 1度。此外,IFT测试表明这些纳米流体的偏好位于岩石流体界面处,从而从注入的处理产生更大的性能以改变岩石润湿性。这些结果得到了比MGSy30纳米粒子的Alsy30纳米粒子的油/盐水(Delta E)界面增加了95%的增长。通过将纳米流体分散在烟道气流中的不同浓度(0至300mg.11)以不同浓度(从0至300mg.11)分散来进行新的内核试验。低浓度为10mg.L-1导致残留的油饱和度(SOR)降低57%,并且在没有纳米流体的情况下相对于烟道气的烟气恢复的增加约23%。由于烟道气流中的纳米流体分散而发生润湿性改变与IFT的降低之间的协同效应。预计本研究中获得的结果将促进用于分散的纳米流体注射的创新和高效的技术,作为紧密凝聚的气田的回收方法,具有优异的低浓度。

著录项

  • 来源
    《Energy & fuels》 |2020年第10期|12517-12526|共10页
  • 作者单位

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Invest Fenomenos Superficie Michael Polanyi Sede Medellin 050034 Colombia;

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Invest Fenomenos Superficie Michael Polanyi Sede Medellin 050034 Colombia;

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Yacimientos Hidrocarburos Sede Medellin 050034 Colombia;

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Invest Fenomenos Superficie Michael Polanyi Sede Medellin 050034 Colombia;

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Yacimientos Hidrocarburos Sede Medellin 050034 Colombia;

    Univ Nacl Colombia Fac Minas Dept Proc & Energia Grp Invest Fenomenos Superficie Michael Polanyi Sede Medellin 050034 Colombia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:25:00

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号