首页> 外文期刊>Energy & fuels >Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass
【24h】

Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass

机译:木质纤维素生物质热解机制对量子化学建模的最新进展

获取原文
       

摘要

Pyrolysis of lignocellulose biomass to produce various fuels and chemicals has gained increasing interest in recent decades. An in-depth understanding of the biomass pyrolysis reaction mechanisms is essential for the advancement of pyrolysis techniques. Quantum chemistry (QC) modeling is a powerful approach for the pyrolysis mechanism investigation at the atomic/molecular level. Despite a short history of only about 2 decades, its application to the biomass pyrolysis mechanism exploration has been well-developed, along with the fast advances of supercomputer and computational codes in the new century. This review addresses the recent progress on the pyrolysis mechanism of the three basic biomass components (cellulose, hemicellulose, and lignin) by QC modeling. On the basis of the QC modeling results reported in the literature, the current review critically summarizes the key developments about the pyrolysis chemistry of biomass by focusing on their microscopic elementary reactions, the formation routes of typical products, bimolecular interactions within or between biomass components, and catalytic effects of various catalysts. Notably, there are great gaps between the theoretical models employed in QC modeling and the natural biomass substance in the pyrolysis process. Therefore, a brief analysis of the challenges and future research perspectives is provided for the biomass pyrolysis mechanism research.
机译:木质纤维素生物质的热解产生各种燃料和化学物质近几十年的利益增加了兴趣。深入了解生物质热解反应机理对于热解技术的推进是必不可少的。量子化学(QC)建模是一种强大的方法,用于在原子/分子水平下进行热解机制调查。尽管只有大约2年的历史,但它在生物质热解机制勘探中的应用已经充分发达,以及新世纪超级计算机和计算代码的快速进展。该审查涉及通过QC建模的三种基本生物质组分(纤维素,半纤维素和木质素)的热解机制的最新进展。在文献中报告的QC造型结果的基础上,目前的审查通过重点关注其微观基本反应,典型产品的形成途径,生物质组分内或生物质组分之间的双分子相互作用的典型生物质热解化学的关键发展。和各种催化剂的催化作用。值得注意的是,在QC建模和热解过程中的天然生物质物质中使用的理论模型之间存在很大的间隙。因此,为生物质热解机制研究提供了对挑战和未来研究观点的浅析。

著录项

  • 来源
    《Energy & fuels》 |2020年第9期|10384-10440|共57页
  • 作者单位

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    Changzhou Inst Technol Sch Photoelect Engn Changzhou 213000 Jiangsu Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:24:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号