首页> 外文期刊>Energy & fuels >Bio-oil Upgrading via Ether Extraction, Looped-Oxide Catalytic Deoxygenation, and Mild Electrocatalytic Hydrogenation Techniques
【24h】

Bio-oil Upgrading via Ether Extraction, Looped-Oxide Catalytic Deoxygenation, and Mild Electrocatalytic Hydrogenation Techniques

机译:通过醚提取,环状氧化物催化脱氧和轻度电催化氢化技术升级生物油

获取原文
获取原文并翻译 | 示例
       

摘要

To overcome the disadvantages of primary bio-oil, two technical routes, namely, bio-oil ether extraction coupled with ether-soluble fraction microwave-assisted catalytic esterification (ES-MACE) and looped-oxide catalytic deoxygenation/mild electrocatalytic hydrogenation (MECH)/catalytic cracking to produce hydrocarbons, were conducted for bio-oil upgrading. With the first route, it was found that the highest ether extraction efficiency was achieved when the volume ratio of bio-oil/ether was 1:2 and the ES quality was effectively improved in comparison to primary bio-oil; after the ES-MACE, the relative content of acids in the ES decreased dramatically, while that of esters increased. With the second route, the oxygen content in the bio-oil deoxidized by a Zn powder decreased by 23.92%. Moreover, the relative contents of acids, alcohols, and sugars diminished, while those of esters, carbonyls, and phenols rose. Then, the MECH step further refined the deoxidized bio-oil; the relative contents of acids, esters, carbonyls, phenols, sugars, and furans decreased, and that of alcohols increased substantially. At the same time, the hydrogen/carbon effective ratio greatly improved after the refining process. Finally, catalytic cracking by proton-exchanged zeolite Socony Mobil-S of the obtained bio-oil was carried out to produce hydrocarbons; the carbon yield of aromatics, olefins, and total chemicals increased along with the hydrogen/carbon effective ratio.
机译:克服原发性生物油的缺点,两条技术途径,即生物油醚提取,与醚可溶性级分耦合微波辅助催化酯化(ES-坐标)和环状氧化物催化脱氧/温和电催化氢化(机械) /催化裂化以生产烃,进行生物油升级。通过第一途径,发现当生物油/乙醚的体积比为1:2时,实现最高的醚提取效率,并且与原发性生物油相比,ES质量有效地改善了ES质量;在ES-MEACE之后,ES中的酸的相对含量显着降低,而酯的酸性增加。通过第二途径,通过Zn粉末脱氧的生物油中的氧含量降低23.92%。此外,酸,醇和糖的相对含量减少,而酯,羰基和酚醛的含量升高。然后,机制步骤进一步精制了脱氧生物油;酸,酯,羰基,酚,糖和呋喃的相对含量下降,并且醇的大致增加。同时,在精炼过程后氢/碳有效比率大大提高。最后,通过质子交换的沸石Socony Mobil-s的催化裂化进行了所得生物油的催化裂化,以制备碳氢化合物;芳烃,烯烃和总化学品的碳产量随着氢/碳有效比而增加。

著录项

  • 来源
    《Energy & fuels》 |2020年第8期|9725-9733|共9页
  • 作者单位

    Southeast Univ Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Jiangsu Peoples R China;

    Southeast Univ Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Jiangsu Peoples R China;

    Southeast Univ Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:24:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号