首页> 外文期刊>Energy & fuels >Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas
【24h】

Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas

机译:结合图像识别和模拟来再现页岩气的吸附/解吸行为

获取原文
获取原文并翻译 | 示例
       

摘要

Shale gas stored in deep shale is in a supercritical state. Therefore, it is necessary to study the adsorption and desorption properties of supercritical shale gas. To accurately determine the state of methane (CH4) in the pores of deep shale, the fractal characteristics of several shale samples drilled at a depth of 2650 m are analyzed using scanning electron microscopy (SEM) and image analysis. We find nanopores with different fractal features in the shale. The effects of adsorption energy and substrate strain on adsorption capacity are clarified. The virial coefficients of CH4 are obtained by molecular dynamics (MD) simulations and are consistent with the experiment. The adsorption and desorption of CH4 in different fractal nanopores are modeled using grand canonical Monte Carlo (GCMC) simulations at different temperatures and pressures (from capillary condensation to supercritical state). Additionally, the gas-in-place (GIP), excess adsorption, and absolute adsorption isotherms are obtained. We find the crossover of excess adsorption isotherms, which was observed in the experiment, and the absolute adsorption amount increases with the increase in pressure in the case of ultrahigh pressure (>40 MPa). Moreover, we obtain an ultrahigh-pressure dual-site Langmuir equation, and it can accurately describe observed adsorption isotherms from low pressure to ultrahigh pressure. Our study visually reproduces the adsorption/desorption behaviors of CH4 under in situ conditions in deep shale and reveals their microscopic mechanism.
机译:储藏在深页岩中的页岩气处于超临界状态。因此,有必要研究超临界页岩气的吸附和解吸性能。为了准确确定深页岩孔隙中的甲烷(CH4)状态,使用扫描电子显微镜(SEM)和图像分析技术分析了在2650 m深度钻探的几个页岩样品的分形特征。我们在页岩中发现了具有不同分形特征的纳米孔。阐明了吸附能和底物应变对吸附容量的影响。 CH4的病毒系数是通过分子动力学(MD)模拟获得的,与实验一致。在不同的温度和压力(从毛细管冷凝到超临界状态)下,使用大范式蒙特卡罗(GCMC)模拟对CH4在不同的分形纳米孔中的吸附和解吸进行建模。此外,可以获得原位气体(GIP),过量吸附和绝对吸附等温线。我们发现了实验中观察到的过量吸附等温线的交叉,在超高压(> 40 MPa)的情况下,绝对吸附量随压力的增加而增加。此外,我们获得了一个超高压双中心Langmuir方程,它可以准确地描述从低压到超高压的吸附等温线。我们的研究从视觉上再现了深页岩中原位条件下CH4的吸附/解吸行为,并揭示了其微观机理。

著录项

  • 来源
    《Energy & fuels》 |2020年第1期|258-269|共12页
  • 作者

  • 作者单位

    Chinese Acad Sci Inst Mech State Key Lab Nonlinear Mech Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:21:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号