...
首页> 外文期刊>Energy & fuels >Hydromechanical Response and Impact of Gas Mixing Behavior in Subsurface CH_4 Storage with CO_2-Based Cushion Gas
【24h】

Hydromechanical Response and Impact of Gas Mixing Behavior in Subsurface CH_4 Storage with CO_2-Based Cushion Gas

机译:基于CO_2的气垫下CH_4地下储层的流体力学响应及混合气体的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Power-to-gas (PtG) stores chemical energy by converting excess electrical energy from renewable sources into an energy-dense gas. Due to its higher available capacity compared to surface-based storage technologies, subsurface storage in geological systems is the most promising approach for efficient and economic realization of the PtG system's storage component. For this purpose, methane (CH4) produced by methanation by means of hydrogen (H-2) and carbon dioxide (CO2) is stored in a geological reservoir until required for further use. In this context, CO2 is used as the cushion gas to maintain reservoir pressure and limiting working gas, i.e., (CH4) losses during withdrawal periods. Consequently, mixing of both gases in the reservoir is inevitable. Therefore, it is necessary to minimize the gas mixing region to optimize the efficiency of the PtG system's storage component. In the present study, the physical properties of CH4, CO2 and their mixtures are reviewed. Then, a multicomponent flow model is implemented and validated against published data. Next, a hydromechanically coupled model is established, considering fluid flow through porous media and effective stresses to investigate the mixing behavior of both gases and the mechanical reservoir stability. The simulation results show that, with increasing reservoir thickness and dip angle, the mixing region is reduced during gas injection if CO2 is employed as the cushion gas. In addition, the degree of mixing is lower at higher temperatures. Feasible injection rates and injection schedules can be derived from the integrated reservoir stability analysis. The methodology developed in the present study allows the determination of optimum strategies for storage reservoir selection and gas injection scheduling by minimizing the gas mixing region.
机译:燃气发电(PtG)通过将来自可再生资源的多余电能转化为能量密集型气体来存储化学能。由于与基于地面的存储技术相比,其可用容量更高,因此地质系统中的地下存储是有效且经济地实现PtG系统的存储组件的最有前途的方法。为此,将通过氢气(H-2)和二氧化碳(CO2)甲烷化生成的甲烷(CH4)储存在地质储层中,直到需要进一步使用为止。在这种情况下,CO 2用作缓冲气体以保持储层压力并限制工作气体,即在撤出期间的(CH 4)损失。因此,两种气体在储存器中的混合是不可避免的。因此,有必要最小化气体混合区域以优化PtG系统存储组件的效率。在本研究中,对CH4,CO2及其混合物的物理性质进行了综述。然后,实施多组件流模型并针对已发布的数据进行验证。接下来,建立了流体力学耦合模型,考虑了流体流经多孔介质和有效应力的作用,以研究两种气体的混合行为和机械储层的稳定性。仿真结果表明,如果采用CO2作为缓冲气,则随着储层厚度和倾角的增加,混合区域会减小。另外,在较高温度下混合度较低。可以从综合储层稳定性分析中得出可行的注入速率和注入时间表。在本研究中开发的方法允许通过最小化气体混合区域来确定用于储存储层选择和气体注入调度的最佳策略。

著录项

  • 来源
    《Energy & fuels》 |2019年第7期|6527-6541|共15页
  • 作者单位

    Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China|GFZ German Res Ctr Geosci, Fluid Syst Modelling, D-14473 Potsdam, Germany;

    Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    GFZ German Res Ctr Geosci, Fluid Syst Modelling, D-14473 Potsdam, Germany|Univ Potsdam, Earth & Environm Sci, D-14469 Potsdam, Germany;

    GFZ German Res Ctr Geosci, Fluid Syst Modelling, D-14473 Potsdam, Germany|Univ Potsdam, Earth & Environm Sci, D-14469 Potsdam, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号