首页> 外文期刊>Energy & fuels >Experimental Investigation and Process Simulation of Oxy-fuel Flue Gas Denitrification in CO_2 Compression Process
【24h】

Experimental Investigation and Process Simulation of Oxy-fuel Flue Gas Denitrification in CO_2 Compression Process

机译:CO_2压缩过程中富氧烟气脱硝的实验研究与过程模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In oxy-combustion power plants, flue gas impurities such as NOR must be removed before CO2 recovery. Currently, sorbents or catalysts as well as a flue gas treatment device are required for the application of the traditional NOx control technologies. To produce NOx-lean oxy-fuel-derived CO2, an attractive option is using the existing CO2 compression and purification units (CPUs) as NO removal units instead of traditional selective catalytic reduction technology. The special condition in the CO2 CPU system, high pressure, was one of the most crucial operating parameters for NOx removal in the CO2 compression process. Appropriate pressure along with sufficient residence time of the pressurized denitrification system should be provided to achieve cost-efficient NOx removal. In this work, to simulate the dynamic process of flue gas denitrification at elevated pressures, a two-stage compression process simulation model was built based on the experimental results, and good agreement between experimental and simulated data was obtained. The optimization of the pressure of the compression process as well as residence time showed the feasibility of the system eliminating 94% of NOx with the emission concentration of 48 ppm (100 mg/m(3)) at the optimized pressure of 2.6 MPa and residence time of 223 s. This work demonstrated the possibility of the design and optimization of pressurized denitrification in an oxy-fuel CO2 compression system.
机译:在氧气燃烧发电厂中,必须先去除烟道气杂质(例如NOR),然后再回收CO2。当前,应用传统的NOx控制技术需要吸附剂或催化剂以及烟气处理装置。为了生产贫NOx的含氧燃料二氧化碳,一个有吸引力的选择是使用现有的CO2压缩和净化装置(CPU)作为NO去除装置,而不是传统的选择性催化还原技术。 CO2 CPU系统中的特殊条件是高压,这是在CO2压缩过程中去除NOx的最关键的运行参数之一。应提供适当的压力以及加压反硝化系统的足够停留时间,以实现经济高效的NOx去除。在这项工作中,为了模拟高压下烟气脱硝的动态过程,根据实验结果建立了两阶段压缩过程模拟模型,并获得了实验数据与模拟数据的良好一致性。压缩过程压力以及停留时间的优化表明,该系统在2.6 MPa的最佳压力和停留时间下可消除94%的NOx,排放浓度为48 ppm(100 mg / m(3))。时间223 s。这项工作证明了在氧燃料CO2压缩系统中设计和优化加压反硝化的可能性。

著录项

  • 来源
    《Energy & fuels》 |2018年第11期|11666-11673|共8页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:06:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号