首页> 外文期刊>Energy & environmental science >A quantitative analysis of the efficiency of solar-driven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts
【24h】

A quantitative analysis of the efficiency of solar-driven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts

机译:基于串联有金属电催化剂岛图案的光吸收剂的太阳能驱动水分解装置设计效率的定量分析

获取原文
获取原文并翻译 | 示例
       

摘要

The trade-off between the optical obscuration and kinetic overpotentials of electrocatalyst films patterned onto the surface of tandem light-absorber structures in model photoelectrosynthetic water-splitting systems was investigated using a 0-dimensional load-line analysis and experimental measurements. The electrocatalytic performance of the catalyst at high current densities, normalized to the electrocatalyst surface area, is an important factor in the dependence of the optimal solar-to-hydrogen (STH) conversion efficiency, eta(STH,opt), on the filling fraction (f(c)) of the patterned catalysts, because even under conditions that produce minority-carrier current densities of similar to 10 mA cm(-2) at the solid/liquid interface, the current density at catalyst-bearing sites can be >1-2 A cm(-2) in low filling-fraction films. A universal current-density versus potential relationship, up to current densities of 10 A cm(-2), was obtained experimentally for the hydrogen-evolution reaction (HER) using patterned Pt ultramicroelectrode (UME) arrays with a range of filling fractions and disc diameters. The eta(STH,opt) of system designs that utilize patterned electrocatalysts located on the illuminated side of tandem photoabsorbers was then evaluated systematically. The maximum STH conversion efficiency, eta(STH,max), using a hypothetical electrocatalyst that was optically transparent but which nevertheless exhibited a current-density versus potential behavior that is characteristic of the most active Pt films measured experimentally regardless of their optical obscuration, was 26.7%. By comparison, the maximum eta(STH,opt) of 24.9% for real patterned Pt electrocatalyst films closely approached this ideal-case limit. The performance and materials utilization of the patterned electrocatalysts and of the uniformly coated electrocatalysts on tandem photoabsorbers were also compared in this study. Hence, patterned electrocatalysts with very low filling fractions can provide a potentially promising path to the realization of efficient large-scale photoelectrolysis systems while minimizing the use of scarce noble metals.
机译:使用0维负载线分析和实验测量研究了模型光电合成水分解系统中图案化到串联吸光结构表面上的电催化剂膜的光学模糊和动力学超电势之间的权衡。归一化为电催化剂表面积的高电流密度下,催化剂的电催化性能是决定最佳太阳能-氢气(STH)转化效率eta(STH,opt)取决于填充率的重要因素(f(c)),因为即使在固/液界面产生少数载流子电流密度类似于10 mA cm(-2)的条件下,载有催化剂的位点的电流密度也可能>低填充分数薄膜中为1-2 A cm(-2)。使用图案化的Pt超微电极(UME)阵列并具有一系列填充分数和圆盘,通过实验对氢演化反应(HER)进行实验,获得了高达10 A cm(-2)的电流密度的通用电流密度与电位关系直径。然后,系统地评估了系统设计的eta(STH,opt),该系统使用位于串联光吸收器受光侧的图案化电催化剂。使用假设的电催化剂,最大的STH转换效率eta(STH,max)是光学透明的,但是无论电流如何遮蔽,无论是光学遮蔽性还是实验性测量,该电催化剂都表现出电流密度与电位行为的关系,这是最活跃的Pt膜的特征26.7%。相比之下,实际图案化的Pt电催化剂膜的最大eta(STH,opt)为24.9%,非常接近此理想情况下的极限。在这项研究中,还比较了图案化的电催化剂和在串联光吸收剂上均匀涂覆的电催化剂的性能和材料利用率。因此,具有极低填充率的图案化电催化剂可为实现有效的大规模光电解系统提供潜在的有希望的途径,同时将稀有贵金属的使用减至最少。

著录项

  • 来源
    《Energy & environmental science》 |2015年第6期|1736-1747|共12页
  • 作者单位

    CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA;

    CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA|CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA;

    CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA;

    CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA;

    CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA|CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA|CALTECH, Beckman Inst, Mol Mat Resource Ctr, Pasadena, CA 91125 USA|CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:11:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号