...
首页> 外文期刊>Energy & environmental science >Visible-light driven heterojunction photocatalysts for water splitting - a critical review
【24h】

Visible-light driven heterojunction photocatalysts for water splitting - a critical review

机译:可见光驱动的异质结光解水光催化剂-一项重要评论

获取原文
获取原文并翻译 | 示例
           

摘要

Solar driven catalysis on semiconductors to produce clean chemical fuels, such as hydrogen, is widely considered as a promising route to mitigate environmental issues caused by the combustion of fossil fuels and to meet increasing worldwide demands for energy. The major limiting factors affecting the efficiency of solar fuel synthesis include; (ⅰ) light absorption, (ⅱ) charge separation and transport and (ⅲ) surface chemical reaction; therefore substantial efforts have been put into solving these problems. In particular, the loading of co-catalysts or secondary semiconductors that can act as either electron or hole acceptors for improved charge separation is a promising strategy, leading to the adaptation of a junction architecture. Research related to semiconductor junction photocatalysts has developed very rapidly and there are a few comprehensive reviews in which the strategy is discussed (A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253-278, K. Li, D. Martin, and J. Tang, Chinese Journal of Catalysis, 2011, 32, 879-890, R. Marschall, Advanced Functional Materials, 2014, 24, 2421-2440). This critical review seeks to give an overview of the concept of heterojunction construction and more importantly, the current state-of-the art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years. For water splitting, these include BiVO_4, Fe_2O_3, Cu_2O and C_3N_4, which have attracted increasing attention. Experimental observations of the proposed charge transfer mechanism across the semiconductor/semiconductor/metal junctions and the resultant activity enhancement are discussed. In parallel, recent successes in the theoretical modelling of semiconductor electronic structures at interfaces and how these explain the functionality of the junction structures is highlighted.
机译:太阳能驱动的半导体催化反应产生清洁的化学燃料,例如氢气,被广泛认为是缓解因化石燃料燃烧引起的环境问题并满足日益增长的全球能源需求的有前途的途径。影响太阳能合成效率的主要限制因素包括: (ⅰ)光吸收,(ⅱ)电荷的分离和传输,以及(ⅲ)表面化学反应;因此,为解决这些问题付出了巨大的努力。特别地,可以充当电子或空穴受体以改善电荷分离的助催化剂或二次半导体的负载是一种有前途的策略,从而导致结结构的适应。与半导体结光催化剂有关的研究发展非常迅速,并进行了一些全面的综述,其中对该策略进行了讨论(A.Kudo和Y.Miseki,Chemical Society Reviews,2009,38,253-278,K.Li,D。 Martin和J.Tang,《催化学报》,2011,32,879-890,R.Marschall,高级功能材料,2014,24,2421-2440)。这篇重要的评论旨在概述异质结构造的概念,更重要的是,过去十年中报道的高效,可见光驱动的结水分解光(电)催化剂的当前最新技术。对于水分解,它们包括BiVO_4,Fe_2O_3,Cu_2O和C_3N_4,它们引起了越来越多的关注。讨论了建议的跨半导体/半导体/金属结的电荷转移机制的实验观察结果以及由此产生的活性增强。同时,着重介绍了半导体电子结构在界面处的理论建模的最新成功以及这些解释了结结构的功能的方式。

著录项

  • 来源
    《Energy & environmental science》 |2015年第3期|731-759|共29页
  • 作者单位

    Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;

    Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;

    Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK,Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;

    Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;

    Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号