...
首页> 外文期刊>Energy & environmental science >Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors
【24h】

Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors

机译:用于电容式储能的全碳混合纤维的空间受限组装:实现微型超级电容器的按订单生产概念

获取原文
获取原文并翻译 | 示例
           

摘要

Miniaturized portable and wearable electronics have diverse power requirements, ranging from one microwatt to several milliwatts. Fiber-based micro-supercapacitors are promising energy storage devices that can address these manifold power requirements. Here, we demonstrate a hydrothermal assembly method using space confinement fillers to control the formation of nitrogen doped reduced graphene oxide and multi-walled carbon nanotube hybrid fibers. Consequently, the all-carbon hybrid fibers have tunable geometries, while maintaining good electrical conductivity, high ion-accessible surface area and mechanical strength; this allows us to address two important issues in micro-supercapacitor research. First, we found a clear correlation between the geometry of the hybrid fibers and their capacitive energy storage properties. Thinner fibers (30 mu m in diameter) have higher specific volumetric capacitance (281 F cm(-3)), superior rate capability, and better length dependent performance. In contrast, larger-diameter hybrid fibers (236 mu m in diameter) can achieve much higher specific length capacitance (42 mF cm(-1)). Second, we realized the first built-to-order concept for micro-supercapacitors by using all-carbon hybrid fibers with diversified geometry as electrodes. The device energy can cover two orders of magnitude, from <0.1 mu W h to nearly 10 mu W h, and the device power can be tuned in four orders of magnitude, from 0.2 mu W to 2000 mW. Furthermore, multiple mechanically flexible fiber-based micro-supercapacitors can be integrated into complex energy storage units with wider operation voltage windows, demonstrating broad application potentials in flexible devices.
机译:小型化的便携式可穿戴电子设备具有多种功率要求,范围从一微瓦到几毫瓦。基于光纤的微型超级电容器是有前途的储能设备,可以满足这些多方面的功率要求。在这里,我们演示了一种水热组装方法,该方法使用空间限制填料来控制氮掺杂的还原氧化石墨烯和多壁碳纳米管杂化纤维的形成。因此,全碳杂化纤维具有可调整的几何形状,同时保持了良好的导电性,高离子可及表面积和机械强度。这使我们能够解决微型超级电容器研究中的两个重要问题。首先,我们发现杂化纤维的几何形状与其电容性储能特性之间存在明显的相关性。较细的纤维(直径为30μm)具有更高的比容电容(281 F cm(-3)),优异的速率能力和更好的长度依赖性。相反,较大直径的混合纤维(直径236μm)可以获得更高的比长度电容(42 mF cm(-1))。其次,我们通过使用具有多种几何形状的全碳杂化纤维作为电极,实现了第一个按需定制的微型超级电容器概念。器件能量可以覆盖两个数量级,从<0.1μW h到近10μW h,并且器件功率可以调整四个量级,从0.2μW到2000 mW。此外,可以将多个基于机械柔性纤维的微型超级电容器集成到具有较宽工作电压窗口的复杂储能单元中,这证明了在柔性设备中的广泛应用潜力。

著录项

  • 来源
    《Energy & environmental science》 |2016年第2期|611-622|共12页
  • 作者单位

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore;

    Singapore Inst Technol, 10 Dover Dr, Singapore 138683, Singapore;

    Singapore Inst Mfg Technol, 71 Nanyang Dr, Singapore 638075, Singapore;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore|Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号