...
首页> 外文期刊>Energy & environmental science >Monodispersed MnO nanoparticles in graphenean interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO_2 batteries
【24h】

Monodispersed MnO nanoparticles in graphenean interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO_2 batteries

机译:石墨珠中的单分散MNO纳米颗粒在Li-Co_2电池中是一种高效的气阴极,将N掺杂的N掺杂的3D碳框架相互连接。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Li-CO2 batteries have been developed in recent years, aiming to utilize CO2, a major cause of the greenhouse effect, as an effective energy storage medium. However, current Li-CO2 batteries still suffer from low energy efficiency, poor rate capability and short cycle life, demanding the design of more efficient CO2 cathodes. Herein, we synthesized ultrafine MnO nanoparticles dispersed in a graphene-interconnected N-doped 3D carbon framework, MnO@NC-G, by pyrolyzing a composite of a GO-wrapped metal-organic framework (MOF) containing Mn(ii) active sites as the cathode material for Li-CO2 batteries. This material can enable low voltage hysteresis (0.88 V at 50 mA g(-1)), high rate capability (up to 1 A g(-1)) and long cycle life (more than 200 cycles) in cells. By comparing MnO@NC-G with four other Mn(ii)-based cathodes, MnO@NC, parent Mn-MOF, MnO@KB and bulk MnO, we propose three key aspects for designing CO2 cathodes: (1) dispersed catalytic species, (2) fast electron transport, and (3) a robust interconnected network. We also found that the performance of a cycled MnO@NC-G cathode can be replenished simply by replacing the anode, indicating that the cell cycle life can be further extended with effective anode protection. Our findings here provide useful guidelines for improving the performance of Li-CO2 batteries, thus shedding light on the development of practical Li battery systems based on gaseous cathodes.
机译:据近年来,Li-Co2电池已开发,旨在利用二氧化碳,是温室效应的主要原因,作为有效的能量存储介质。然而,目前的LI-CO2电池仍然遭受低能量效率,速率差和短循环寿命,要求更有效的CO2阴极设计。在此,我们通过热解含有含有Mn(II)活性位点的去缠绕的金属 - 有机骨架(MOF)的复合物,合成分散在石墨烯 - 互连的N掺杂的3D碳框架MNO-NC-G中的超细MnO纳米颗粒。 Li-Co2电池的阴极材料。该材料可以使低电压滞后(0.88V以50mA G(-1)),高速率能力(最多1Ag(-1))和细胞中长的循环寿命(超过200个循环)。通过将MNO @ NC-G与四个其他Mn(II)的阴极进行比较,MNO @ NC,父母MN-MOF,MNO @ KB和批量MNO,我们提出了用于设计CO2阴极的三个关键方面:(1)分散的催化物种(2)快速电子传输,(3)稳健互连网络。我们还发现,可以通过更换阳极来简单地补充循环MNO @ NC-G阴极的性能,表明可以通过有效的阳极保护进一步延伸细胞循环寿命。我们的调查结果提供了改善Li-Co2电池性能的有用指导方针,从而脱落了基于气体阴极的实用Li电池系统的开发。

著录项

  • 来源
    《Energy & environmental science》 |2019年第3期|1046-1054|共9页
  • 作者单位

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem & Chem Engn Min Educ Key Lab Cluster Sci Beijing Key Lab Photoelect Electrophoton Convers Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号