...
首页> 外文期刊>Energy Conversion & Management >Criticality and burn up evolutions of the Fixed Bed Nuclear Reactor with alternative fuels
【24h】

Criticality and burn up evolutions of the Fixed Bed Nuclear Reactor with alternative fuels

机译:固定床核反应堆与替代燃料的临界性和燃尽演变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Time evolution of criticality and burn-up grades of the Fixed Bed Nuclear Reactor (FBNR) are investigated for alternative fuels. These are: (1) low enriched uranium, (2) weapon grade plutonium, (3) reactor grade Plutonium, and (4) minor actinides in the spent fuel of light water reactors (LWRs). The criticality calculations are conducted with SCALE 5.1 using S_8-P_3 approximation in 238 neutron energy groups with 90 groups in thermal energy region. The main results of the study can be summarized as follows:rn(1) Low enriched uranium (UO_2): FBNR with an enrichment grade of 9% and 19% will start with k_(eff) =1.2744 and k_(eff) = 1.36 and can operate ~8 and >15 years with the same fuel charge, where criticality drops to k_(eff) - 1.06 and a burn-up grade of 54 000 and > 110 000 MW.D/t can be attained.rn(2) Weapon grade plutonium: Such a high quality nuclear fuel suggests to be mixed with thorium. Second series of criticality calculations are conducted with fuel compositions made of thoria (ThO_2) and weapon grade PuO_2, where PuO_2 component has been varied from 1% to 100%. Criticality with k_(eff)> 1.0 is achieved by ~2.5% PuO_2. At 4% PuO_2, the reactor criticality will become satisfactory (k_(eff)= 1.1121), rapidly increasing with more PuO_2. A reasonable mixture will by around 20% PuO_2 and 80% ThO_2 with a k_(eff) = 1.2864. This mixed fuel would allow full power reactor operation for >20 years and burn-up grade can reach 136 000 MW.D/t.rn(3) Reactor grade plutonium: Third series of criticality calculations are conducted with fuel compositions made of thoria and reactor grade PuO_2, where PuO_2 is varied from 1% to 100%. Reactor becomes critical by ~8% PuO_2 content. One can achieve k_(eff)- 1.2670 by 35% PuO_2 and would allow full power reactor operation also for >20 years and burn-up grade can reach 123 000 MW.D/t.rn(4) Minor actinides in the spent fuel of LWRs: Fourth series of criticality calculations are conducted with fuel compositions made of thoria and MAO_2, where MAO_2 is varied from 1% to 100%. Reactor becomes critical by ~17% MAO_2 content. Reasonably high reactor criticality (k_(eff)- 1.2673) is achieved by 50% MAO_2 for a reactor operation time of 15 years with a burn up of 86 000 MW.D/ t without fuel change. On that way, the hazardous nuclear waste product can be transmuted as well as utilized as fuel.
机译:对于替代燃料,研究了固定床核反应堆(FBNR)的临界度和燃尽等级的时间演变。它们是:(1)低浓缩铀,(2)武器级p,(3)反应堆级P和(4)轻水反应堆(LWR)乏燃料中的次act系元素。临界度计算使用SCALE 5.1在238个中子能级中使用S_8-P_3近似进行,其中在热能区域中有90个中子能级。研究的主要结果可以概括如下:rn(1)低浓铀(UO_2):富集度分别为9%和19%的FBNR将从k_(eff)= 1.2744和k_(eff)= 1.36开始并且可以在相同的燃料充量下运行约8年和> 15年,其中临界度下降到k_(eff)-1.06,燃耗等级为54000和> 110000 MW.D /t。rn(2 )武器级p:这种高质量的核燃料建议与with混合。第二系列的关键度计算是使用由氧化ria(ThO_2)和武器级PuO_2制成的燃料成分进行的,其中PuO_2的成分从1%变为100%。通过〜2.5%PuO_2达到k_(eff)> 1.0的临界度。 PuO_2为4%时,反应堆的临界度将变得令人满意(k_(eff)= 1.1121),随着更多PuO_2的增加,反应堆的临界度将迅速提高。合理的混合物将含有约20%的PuO_2和80%的ThO_2,k_(eff)= 1.2864。这种混合燃料可以使全功率反应堆运行超过20年,燃尽等级可以达到136 000 MW.D / t.rn(3)反应堆级p:第三系列的临界度计算是使用氧化ria和反应堆级PuO_2,其中PuO_2从1%到100%不等。 〜8%的PuO_2含量使反应堆变得至关重要。一种可以通过35%PuO_2达到k_(eff)-1.2670,并且还可以使全功率反应堆运行> 20年,燃尽等级可以达到123 000 MW.D / t.rn(4)乏燃料中的次act系元素轻水堆的临界值:第四系列的临界度计算是用氧化tho和MAO_2制成的燃料成分进行的,其中MAO_2从1%到100%不等。约17%的MAO_2含量使反应堆变得至关重要。在15年的反应堆运行时间中,通过50%的MAO_2可达到合理的高反应堆临界度(k_(eff)-1.2673),燃尽量为86 000 MW.D / t,无需更换燃料。这样,危险的核废料可以被转化并用作燃料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号