首页> 外文期刊>Energy Conversion & Management >Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic
【24h】

Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic

机译:使用改进的执行器圆盘模型和计算流体动力学模型,对Horns Rev离岸风电场中的水平轴风力涡轮机尾流进行建模

获取原文
获取原文并翻译 | 示例
       

摘要

In order to increase the accuracy and ability to predict the total energy gained in wind farms, it is necessary to use accurate wake models. In the present study, an improved methodology is applied on actuator disc in order to take all the operational and geometrical characteristics into account such as airfoil type, angular velocity, twist, and chord distribution. In wind farms, turbines are affected by upstream ones resulting in a non-uniform upstream velocity for each turbine. However, in literature, for all the wind turbines in a wind farm, thrust coefficient curve at undisturbed wind speed is used in order to estimate the upstream speed resulting in some errors. This weakness of actuator disc is resolved by a hybrid methodology based on blade element momentum theory and mass conservation coupled with computational fluid dynamics to be independent of thrust coefficient curve and calculate more accurate incoming velocity according to operational condition. It has been observed that by using the developed model and considering the details of wind turbines and more accurate incoming wind speed, in spite of steady state simulation and low computational cost, the interaction between different turbines is well described. For turbulence modeling, standard k-epsilon turbulence model is used and it is shown that the error of power estimation in second row of turbines especially in 270 degrees wind angle is decreased significantly. In large wind sectors, such as 270 +/- 10 degrees, +/- 15 degrees, 222 +/- 10 degrees, +/- 15 degrees and 312 +/- 5 degrees, +/- 10 degrees the proposed model performs as well as LES simulation. The developed methodology is practical for designing and optimization of new wind farms even if the technical specifications such as thrust curve would not be available from manufacturer.
机译:为了提高准确性和预测风电场中获得的总能量的能力,有必要使用精确的尾流模型。在本研究中,一种改进的方法应用于致动器盘上,以考虑所有的操作和几何特性,例如机翼类型,角速度,扭曲和弦分布。在风电场中,涡轮受上游涡轮的影响,导致每个涡轮的上游速度不均匀。但是,在文献中,对于风电场中的所有风力涡轮机,使用风速不变时的推力系数曲线来估计上游速度,从而导致一些误差。通过基于叶片元件动量理论和质量守恒的混合方法解决了执行器盘的这一弱点,再结合计算流体动力学,使其独立于推力系数曲线,并根据运行条件计算出更准确的进入速度。已经观察到,通过使用开发的模型并考虑风力涡轮机的细节和更精确的进入风速,尽管稳态模拟和低计算成本,也很好地描述了不同涡轮机之间的相互作用。对于湍流建模,使用标准的k-ε湍流模型,结果表明,第二排涡轮机(尤其是270度风角)的功率估计误差显着降低。在较大的风力扇区中,例如270 +/- 10度,+ /-15度,222 +/- 10度,+ /-15度和312 +/- 5度,+ /-10度,建议的模型执行以及LES模拟。即使无法从制造商那里获得诸如推力曲线之类的技术规格,所开发的方法仍可用于设计和优化新的风电场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号