...
首页> 外文期刊>Energy Conversion & Management >Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery
【24h】

Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery

机译:使用共沸混合物的内燃机余热回收双环有机朗肯循环的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

The dual-loop organic Rankine cycle (DORC) is a promising technology for internal combustion engine waste heat recovery. Zeotropic mixtures can improve temperature matches with heat source and sink in the phase change process for its non-isothermal phase change characteristic. Thus, zeotropic mixtures are adopted for high-temperature loop (HTL) and low-temperature loop (LTL) of DORC. Cyclopentane/cyclohexane and benzene/ toluene mixtures are used for HTL, whereas isobutane/isopentane (R600a/R601a) mixtures are selected as working fluids for LTL. The mole fraction effects of mixtures on net power output, energy efficiency, energy destruction rate (HTL evaporator, condenser/evaporator, LTL preheater, and condenser), and heat utilization ratio of waste heat are analyzed. The influences of engine exhaust gas temperature on net power output and energy destruction rate are also discussed. Results show that the use of mixtures for the two loops can reduce the energy destruction rate of HTL evaporator and LTL condenser compared to that of pure working fluids system and the energy destruction rate of condenser/evaporator compared to that of mixtures using only one loop system. Furthermore, these mixtures increase the heat utilization ratio of waste heat, net power output, and energy efficiency compared to those of a pure working fluid system. When cyclopentane/cyclohexane or benzene/toluene mixtures are used for HTL and R600a/R601a mixtures are used for LTL, the system net power output relative increment rates of mixture systems are 2.5-9.0% and 1.4-4.3%, respectively, compared to those of corresponding pure working fluids system with 573.15-623.15 K engine exhaust gas temperature.
机译:双回路有机朗肯循环(DORC)是用于内燃机余热回收的有前途的技术。共沸混合物具有非等温相变特性,可以改善相变过程中与热源和热沉的温度匹配。因此,DORC的高温回路(HTL)和低温回路(LTL)采用共沸混合物。 HTL使用环戊烷/环己烷和苯/甲苯的混合物,而LTL则选择异丁烷/异戊烷(R600a / R601a)混合物作为工作流体。分析了混合物的摩尔分数对净功率输出,能量效率,能量破坏率(HTL蒸发器,冷凝器/蒸发器,LTL预热器和冷凝器)以及废热利用率的影响。还讨论了发动机排气温度对净功率输出和能量破坏率的影响。结果表明,与纯工作流体系统相比,在两个回路中使用混合物可以降低HTL蒸发器和LTL冷凝器的能量破坏率,而与仅使用一个回路系统的混合物相比,可以降低冷凝器/蒸发器的能量破坏率。此外,与纯工作流体系统相比,这些混合物提高了废热的热利用率,净功率输出和能源效率。当HTL使用环戊烷/环己烷或苯/甲苯混合物,而LTL使用R600a / R601a混合物时,与之相比,混合系统的系统净功率输出相对增长率分别为2.5-9.0%和1.4-4.3% 573.15-623.15 K发动机废气温度的相应纯工作流体系统的示意图。

著录项

  • 来源
    《Energy Conversion & Management》 |2018年第6期|201-214|共14页
  • 作者单位

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beying Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beying Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beying Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beying Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beying Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dual-loop organic Rankine cycle; Zeotropic mixture; Engine waste heat; Temperature match; Thermodynamic analysis;

    机译:双环有机朗肯循环;共沸混合物;发动机余热;温度匹配;热力学分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号