首页> 外文期刊>Energy Conversion & Management >Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm
【24h】

Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm

机译:利用遗传算法的太阳能-氢热电联产系统的多目标尺寸优化

获取原文
获取原文并翻译 | 示例
           

摘要

A sizing multi-objective optimisation using the genetic algorithm is performed on a solar-hydrogen combined heat and power system integrated with solar-thermal collectors (SH CHP-ST) to supply both power and heat (i.e. hot water demand) to an application. A solar-hydrogen system is a renewable system with hydrogen-based storage consisting of an electrolyser, a hydrogen tank, and a fuel cell. The fuel cell generates heat while producing power that can be recovered. The heat collected from the fuel cell can be integrated with the heat supply of a renewable solar-thermal system consisting of an evacuated tube collector and a hot water storage tank. A simulation module to model the operation of the whole system is implemented in MATLAB. Energy demands and meteorological data for a remote household located in southeast Australia are considered. The sizes of the main components of the system are optimised with the objectives of maximising the overall reliability of the system, minimising the levelised cost of energy, and minimising the percentage of excess energy from the PV that is not utilised. The results show that the electric reliability of the optimal solutions in favour is always equal to 100%. The maximum thermal reliability that could be obtained is around 96%. A trade-off between the cost of energy and percentage of wasted power from PV is found.
机译:使用遗传算法对与太阳能集热器(SH CHP-ST)集成在一起的太阳能-氢结合的热电系统执行大小确定的多目标优化,以向应用程序提供电力​​和热量(即热水需求)。太阳能氢系统是一种具有氢基存储的可再生系统,由电解槽,氢罐和燃料电池组成。燃料电池在产生热量的同时产生可以回收的功率。从燃料电池收集的热量可以与可再生的太阳能系统的供热集成,该系统由抽空的集热管和热水储罐组成。在MATLAB中实现了模拟整个系统运行的仿真模块。考虑了位于澳大利亚东南部的一个偏远家庭的能源需求和气象数据。优化了系统主要组件的大小,其目标是最大化系统的整体可靠性,最小化能源的平均成本以及最小化未利用的PV多余能量的百分比。结果表明,最佳解决方案的电气可靠性始终等于100%。可获得的最大热可靠性约为96%。找到了能源成本与PV浪费的功率百分比之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号