...
首页> 外文期刊>Energy Conversion & Management >Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents
【24h】

Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents

机译:朝着高性能吸附冷能量存储和离子液体吸收剂的变速箱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The shortcomings of conventional working pairs in thermal energy storage and transmission based on absorption cycle have become major obstacles for practical application. Ionic liquids (ILs) are promising alternatives, while only few ILs have been evaluated with enumeration method, by which it is difficult to create a short-term breakthrough. In this study, a prediction framework is established via relating the fundamental thermodynamic properties (absorbing ability and excess enthalpy) with cycle performance (COP and energy density) in order to clarify the maximum potential of this technology and the desirable properties of potentially interesting working fluids. A comprehensive investigation of promising IL absorbents in thermal storage/transmission has been carried out by the framework. Then, theoretical analysis shows that an optimal region with both high COP and high energy density (between 31.00 kJ/mol to 37.00 kJ/mol) could be reached, indicating 57% of improvement in energy density is possible (the highest level at current stage is 23.52 kJ/mol). To pursue the optimal performance, strong affinity between the species and decreasing trend of excess enthalpy during generation are found to be key roles. Such a theoretical framework could be further extended to the fluids design and screening of absorption thermal energy storage/transmission, as well as other related technologies.
机译:常规工作对在吸收循环的热能储存和传输中的缺点已成为实际应用的主要障碍。离子液体(ILS)是有前途的替代方案,而只有很少的ILS已经用枚举方法评估,其中难以造成短期突破。在该研究中,通过将基本热力学性质(吸收能力和多余的焓)与循环性能(COP和能量密度)相关,以澄清该技术的最大电位和可能有趣的工作流体的最大潜力,建立预测框架。通过框架进行了对热储存/传输中有前途的IL吸收剂的全面调查。然后,理论分析表明,可以达到具有高COP和高能量密度(31.00kJ / mol至37.00kJ / mol)的最佳区域,表明可以提高能量密度的57%(当前阶段的最高水平)是23.52 kj / mol)。为了追求最佳性能,发现生成期间的物种与多余焓的趋势之间的强烈亲和力成为关键作用。这种理论框架可以进一步扩展到流体设计和吸收热能存储/变速器以及其他相关技术的筛选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号