首页> 外文期刊>Energy Conversion & Management >Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant
【24h】

Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant

机译:燃煤电厂集成的超临界二氧化碳循环技术经济分析

获取原文
获取原文并翻译 | 示例
           

摘要

Supercritical carbon dioxide (sCO(2)) cycles can achieve higher efficiencies than an equivalent steam Rankine cycle at higher turbine inlet temperatures (550 degrees C) with a compact footprint (tenfold). sCO(2) cycles are lowpressure ratio cycles (similar to 4-7), therefore recuperation is necessary, which reduces the heat-addition temperature range. Integration of sCO(2) cycles with the boiler requires careful management of low-temperature heat to achieve higher plant efficiency. This study analyses four novel sCO(2) cycle configurations which capture the low-temperature heat in an efficient way and the performance is benchmarked against the state-of-the-art steam Rankine cycle. The process parameters (13-16 variables) of all the cycle configurations are optimised using a genetic algorithm for two different turbine inlet temperatures (620 degrees C and 760 degrees C) and their techno-economic performance are compared against the advanced ultra-supercritical steam Rankine cycle. A sCO(2) power cycle can achieve a higher efficiency than a steam Rankine cycle by about 3-4% points, which is correspond to a plant level efficiency of 2-3% points, leading to cost of electricity (COE) reduction. Although the cycle efficiency has increased when increasing turbine inlet temperature from 620 inverted perpendicular C to 760 degrees C, the COE does not notably reduce owing to the increased capital cost. A detailed sensitivity study is performed for variations in compressor and turbine isentropic efficiency, pressure drop, recuperator approach temperature and capacity factor. The MonteCarlo analysis shows that the COE can be reduced up to 6-8% compared to steam Rankine cycle, however, the uncertainty of the sCO(2) cycle cost functions can diminish this to 0-3% at 95% percentile cumulative probability.
机译:超临界二氧化碳(SCO(2))循环可以在更高的涡轮机入口温度(& 550℃)下的等效蒸汽兰峰循环,具有紧凑的占地面积(十倍)。 SCO(2)循环是低压比循环(类似于4-7),因此恢复是必要的,这减少了含热料温度范围。与锅炉的SCO(2)周期的整合需要仔细管理低温热量以实现更高的植物效率。本研究分析了四种新的SCO(2)个循环配置,其以有效的方式捕获低温热量,并且性能与最先进的蒸汽达斯峰循环有基准测试。所有周期配置的过程参数(13-16变量)使用两个不同的涡轮机入口温度(620摄氏度和760摄氏度)进行优化,并将其技术经济性能与先进的超超临界蒸汽进行比较朗肯循环。 SCO(2)功率循环可以达到比蒸汽兰峰循环更高的效率约为3-4%的点,这与植物水平效率相对应效率为2-3%,导致电力成本(COE)减少。尽管当涡轮机入口温度从620倒垂直C至760℃的增加时,循环效率增加,但由于资金成本增加,COE不显着降低。对压缩机和涡轮机等熵效率,压降,恢复器接近温度和容量因子进行详细的灵敏度研究。 Montecarlo分析表明,与蒸汽兰峰循环相比,COE可以减少至6-8%,但是,SCO(2)循环成本函数的不确定性可以将其降低至0-3%,累积概率为95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号