首页> 外文期刊>Energy Conversion & Management >Design and optimization investigation on hydraulic transmission and energy storage system for a floating-array-buoys wave energy converter
【24h】

Design and optimization investigation on hydraulic transmission and energy storage system for a floating-array-buoys wave energy converter

机译:浮动阵列浮标波能变换器液压传动和储能系统的设计与优化研究

获取原文
获取原文并翻译 | 示例
       

摘要

The energy density of wave power in China is relatively low compared with that of the wave power in Europe. Simply improving the shape or size of the energy-capturing mechanism for a wave energy converter (WEC) cannot directly result in a larger energy output. Instead, a solution of array-type energy-capturing mechanism integrating marine structure bares practical application potential to increase the power take-off (PTO) productivity. To exploit the conditions in China, a WEC system integrating oscillating-array-buoys with a floating platform is proposed and sea trials of a 10 kW prototype confirmed the feasibility of the floating-array-buoys WEC (FABWEC) system for wave energy conversion. However, sea trials data indicated that the energy conversion performance of the mechanical transmission design in the FABWEC system was relatively poor under the low wave energy density, suggesting the urgency of improving energy conversion and storage system to the increase of system performance. Herein, a hydraulic transmission and accumulator system (HTAS) is designed to replace the original mechanical transmission and flywheel system (MTFS), aiming to enhance the total energy conversion performance of the FABWEC system. The hydrodynamic simulation and numerical solution of the wave energy capture mechanism in the FABWEC system are carried out to facilitate the design and main components selection of the HTAS. And then the simulation and optimization of the designed HTAS are performed by the hydraulic simulation software. It is worth noting that there have been few reports on the operating performance of the HTAS with respect to buoys. In the hydraulic optimization process, the final optimization parameters of the HTAS are obtained by comparing the dynamic characteristics of the system, including system pressure, flow rate, motor torque and angular velocity, under the conditions with or without accumulator, with different buoy numbers and with different buoy phase differences. The simulated results show that the accumulator could effectively damp out the fluctuations in output power to turn the wave energy into a dispatchable power source; The energy conversion and output performances of the HTAS behave better with the increase of the buoys number and buoys phase difference, but the space and cost factors need to be taken into consideration in the actual operation; Within the research scope of this paper, the HTAS has an optimal performance for energy conversion and output when the number of buoys on one side of the floating platform is 5 and the phase difference between the buoys is 60?; Under the optimized conditions, the average output power of the hydraulic motor after stable operation of the HTAS can reach 5.8 kW. Significantly, the optimized HTAS could deliver the required electricity power steadily under the low wave energy density and has been practically applied to the next generation FABWEC prototype.
机译:与欧洲波力相比,中国的波浪力量的能量密度相对较低。简单地提高波能转换器(WEC)的能量捕获机构的形状或尺寸不能直接导致更大的能量输出。相反,阵列型能量捕获机构的解决方案集成了海洋结构的实际应用潜力,以提高功率起飞(PTO)生产率。为了利用中国的条件,提出了一种与浮动平台的振荡 - 阵列浮标的WEC系统,并且10 kW原型的海洋试验证实了浮动阵列 - 浮标WEC(FABWEC)系统进行波能转换的可行性。然而,海上试验数据表明,在低波动能量密度下,FABWEC系统中机械传动设计的能量转换性能相对较差,表明将能量转换和储存系统提高到系统性能提高的紧迫性。这里,液压传输和蓄能器系统(HTAS)设计成代替原始的机械传动和飞轮系统(MTF),旨在提高FABWEC系统的总能量转换性能。采用FABWEC系统中波能量捕获机制的流体动力学模拟和数值解,以促进HTA的设计和主要组成部分。然后,设计的HTA的模拟和优化由液压仿真软件执行。值得注意的是,关于浮标的HTA的操作性能很少有报道。在液压优化过程中,通过比较系统的动态特性,包括系统压力,流速,电动机扭矩和角速度,在带有或不具有蓄能器的条件下,具有不同的浮标数量和不同的浮标数量来获得HTA的最终优化参数。具有不同的浮标相位差异。模拟结果表明,蓄能器可以有效地阻止输出功率的波动,以将波能转化为调度电源;随着浮标数量和浮标相位差的增加,HTA的能量转换和输出性能表现得更好,但在实际操作中需要考虑空间和成本因素;在本文的研究范围内,当浮动平台一侧的浮标数量为5时,HTA具有能量转换和输出的最佳性能,并且浮标之间的相位差为60?在优化条件下,HTAS稳定运行后液压电机的平均输出功率可达5.8千瓦。值得注意的是,优化的HTA可以稳定地在低波能量密度下稳定地提供所需的电力,并且实际上已经应用于下一代Fabwec原型。

著录项

  • 来源
    《Energy Conversion & Management》 |2021年第5期|113998.1-113998.17|共17页
  • 作者单位

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China|Xiamen Univ Coll Energy Xiamen 361005 Peoples R China|Jimei Univ Cleaning Combust & Energy Utilizat Res Ctr Fujian Xiamen 361021 Peoples R China;

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China;

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China|Xiamen Univ Coll Energy Xiamen 361005 Peoples R China|Jimei Univ Cleaning Combust & Energy Utilizat Res Ctr Fujian Xiamen 361021 Peoples R China;

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China|Jimei Univ Cleaning Combust & Energy Utilizat Res Ctr Fujian Xiamen 361021 Peoples R China;

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China|Jimei Univ Cleaning Combust & Energy Utilizat Res Ctr Fujian Xiamen 361021 Peoples R China;

    Jimei Univ Key Lab Energy Cleaning Utilizat & Dev Fujian Pro Xiamen 361021 Peoples R China|Jimei Univ Cleaning Combust & Energy Utilizat Res Ctr Fujian Xiamen 361021 Peoples R China;

    CIMC Offshore Engn Inst Co Ltd Yantai 264670 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    WEC; Floating-array-buoys; Energy conversion; Hydraulic transmission; Design and optimization investigation;

    机译:WEC;浮动阵列浮标;能量转换;液压传动;设计和优化调查;
  • 入库时间 2022-08-19 02:22:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号