首页> 外文期刊>Energy Conversion & Management >Proposal and performance assessment of a combined system based on a supercritical carbon dioxide power cycle integrated with a double-effect absorption power cycle
【24h】

Proposal and performance assessment of a combined system based on a supercritical carbon dioxide power cycle integrated with a double-effect absorption power cycle

机译:基于二临时吸收功率循环的超临界二氧化碳电源循环基于超临界二氧化碳电源循环的组合系统的提案和性能评估

获取原文
获取原文并翻译 | 示例
       

摘要

The supercritical carbon dioxide Brayton cycle is a promising energy conversion approach to provide high efficiency for a wide range of applications, and it is considered to be more potent and appropriate alternative to the conventional steam Rankine cycle for the power generation. To take advantage of the attractive physical and transport properties near the critical point of the carbon dioxide, a large amount of heat is released to the heat sink before the carbon dioxide entering the compressor. In this study, a novel double-effect absorption power cycle is proposed to reuse the waste heat from the supercritical carbon dioxide power cycle for further improving the overall performance. Six decision variables are selected to perform the parametric analysis for determining the effect of these decision parameters on the performance of the proposed system, and the further parametric optimizations, exergy analysis and the comparative study are conducted for the proposed system and other carbon dioxide based system to reveal the superiority in overall performance for the proposed system. The results indicate that the major exergy destruction occurs in the heat source and the heat sink of the single supercritical carbon dioxide system. The exergy destruction in the heat sink can be effectively reduced by 16.23% by integrating the supercritical carbon dioxide system with absorption power cycle, and it can be further reduced by 3.87% by replacing absorption power cycle with the proposed double-effect absorption power cycle. In addition, compared with the single supercritical carbon dioxide system and the combined system integrating supercritical carbon dioxide power cycle with absorption power cycle, the exergy efficiency improvement of 10.94% and 3.00% and the reduction in the total product unit cost by 7.97% and 2.66% can be obtained by the proposed system, respectively.
机译:超临界二氧化碳Brayton循环是一种有希望的能量转换方法,可提供高效率的广泛应用,并且被认为是发电的传统蒸汽朗朗循环的更有效和适当的替代品。为了利用附近二氧化碳的临界点附近的有吸引力的物理和运输特性,在进入压缩机的二氧化碳之前将大量的热量释放到散热器上。在这项研究中,提出了一种新型双效吸收功率循环,以将废热从超临界二氧化碳功率循环中的用于进一步改善整体性能。选择六个判定变量来执行参数分析,以确定这些决策参数对所提出的系统性能的影响,并且对所提出的系统和其他基于二氧化碳的系统进行进一步的参数优化,漏洞分析和比较研究揭示拟议系统的整体性能优势。结果表明,单一超临界二氧化碳系统的热源和散热器发生了主要的漏洞破坏。通过将超临界二氧化碳系统与吸收功率循环集成,可以有效地减少散热器中的暴力破坏,通过更换吸收动力循环,可以进一步减少3.87%,通过提出的双效吸收功率循环。此外,与单一超临界二氧化碳系统相比和整合超临界二氧化碳动力循环的混合系统,具有吸收功率循环,高度效率提高10.94%和3.00%,总产品单位的减少成本为7.97%和2.66 %分别可以通过所提出的系统获得。

著录项

  • 来源
    《Energy Conversion & Management》 |2021年第4期|113923.1-113923.15|共15页
  • 作者单位

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

    Nucl Power Inst China Chengdu 610213 Peoples R China;

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Mech & Vehicle Engn Changsha 410082 Hunan Peoples R China|Hunan Univ Inst New Energy & Energy Saving & Emiss Reduct Te Changsha 410082 Hunan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Supercritical CO2 cycle; Absorption power cycle; Low-grade heat recovery; Parametric analysis; Multi-objective optimization;

    机译:超临界CO2循环;吸收功率循环;低级热回收;参数分析;多目标优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号