...
首页> 外文期刊>Energy Conversion & Management >Complete design space exploration of isolated hybrid renewable energy system via dynamic programming
【24h】

Complete design space exploration of isolated hybrid renewable energy system via dynamic programming

机译:通过动态编程对隔离式混合可再生能源系统进行完整的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

The electrical demand of isolated regions without connection to the main grid is usually satisfied by a diesel generator. By replacing this conventional system with a hybrid renewable energy system (HRES) including renewable power generators and battery system, the initial cost increases due to additional components. The operating cost, in contrast, can be reduced by minimizing fuel consumption. The economic viability of HRES, therefore, is heavily dependent on both component sizing and energy dispatch strategy. In order to calculate the minimal operating cost, the control trajectory has to be optimized for each design. Within the common publications, the optimal design is not determined based on optimal control trajectory, but using simple rule-based (RB) or advanced RB control. Furthermore, the correlation between component sizing and economic performance is not identified clearly. In this paper, the complete design space for HRES is explored by dynamic programming (DP) based optimal control. In this way, it is guaranteed that the economic performance of each design is deduced from its full potential and the fair comparison among different designs is enabled. The economic performance is evaluated based on four economic parameters including initial cost, operating & maintenance cost, life cycle cost (LCC), and the payback time (PBT). Based on simulation results using DP, the influence of component sizing on each economic parameter is systematically studied. The simulation results show the overall economic performance is determined by the size of renewable power generator and battery storage, whereby diesel generator plays a minor role. Since the LCC and PBT are dominated by initial cost rather than operating cost, small component sizes are preferred minimizing the wasted dump power. Finally, the impact of energy dispatch strategy is investigated by comparing DP based optimal control with simple RB and advanced RB control. Although the loss of optimality using advanced RB control is negligible within 3%, the application of simple RB control suffers from an optimality loss of 7-16%.
机译:通常不连接主电网的偏远地区的电力需求可以通过柴油发电机来满足。通过用包括可再生发电机和电池系统的混合可再生能源系统(HRES)代替该常规系统,由于增加了组件,初始成本增加了。相反,可以通过最小化燃料消耗来降低运行成本。因此,HRES的经济可行性在很大程度上取决于组件的大小和能量分配策略。为了计算最小的运行成本,必须针对每种设计优化控制轨迹。在普通出版物中,不是根据最佳控制轨迹来确定最佳设计,而是使用基于简单规则的(RB)或高级RB控制。此外,组件尺寸与经济绩效之间的相关性还不清楚。在本文中,通过基于动态编程(DP)的最优控制来探索HRES的完整设计空间。这样,可以确保从每个设计的全部潜力中推断出每个设计的经济性能,并可以在不同设计之间进行公平的比较。根据四个经济参数评估经济绩效,包括初始成本,运营和维护成本,生命周期成本(LCC)和投资回收期(PBT)。基于DP的仿真结果,系统地研究了部件尺寸对每个经济参数的影响。仿真结果表明,总体经济表现取决于可再生发电机和蓄电池组的大小,其中柴油发电机起着较小的作用。由于LCC和PBT由初始成本而不是运营成本主导,因此,最好使用小尺寸的组件以最大程度地减少浪费的转储功率。最后,通过将基于DP的最优控制与简单RB和高级RB控制进行比较,研究了能量分配策略的影响。尽管使用高级RB控制的最佳性损失可以忽略不计3%,但是使用简单RB控制的最佳损失为7-16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号