...
首页> 外文期刊>Energy Conversion & Management >Combustion partitioning inside a natural gas spark ignition engine with a bowl-in-piston geometry
【24h】

Combustion partitioning inside a natural gas spark ignition engine with a bowl-in-piston geometry

机译:具有活塞碗形几何形状的天然气火花点火发动机内的燃烧分隔

获取原文
获取原文并翻译 | 示例
           

摘要

A solution to increase the use of natural gas in U.S. is to convert existing diesel engines to natural-gas spark ignition operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. This study presents experimental and numerical simulation results of flame propagation inside a such converted engine. Compared to the conventional theory of flame propagation inside a spark ignition engine, the results showed that the combination of strong radial inward movement and tumble resulted in a strong turbulence inside the bowl compared to the low turbulence intensity inside the squish region. After ignition, the characteristic turbulence distribution partitioned the combustion into two separated events: a fast, thick flame inside the bowl but a slow, thinner, and delayed flame inside the squish region, a feature unique to the lean-burn natural-gas spark-ignition combustion inside a bowl-in-piston geometry. Specifically, the high turbulence inside the bowl increased the local flame speed. By contrast, the squish experienced a much lower turbulence, which, combined with the higher surface/volume ratio, reduced the turbulent flame speed. In addition, the overlap between the fast- and the slow-burn events, which determined the phasing and the amount of fuel inside the squish, was controlled by the combustion phasing. For example, advancing the burning inside the bowl increased the fraction of fuel burning in the late combustion stage, which also increased the phasing difference between the fast- and the slow-burn events and produced a secondary peak in the apparent heat release rate. As the less-favorable combustion conditions inside the squish region would increase carbon monoxide and unburned hydrocarbons emissions, this study suggests that combustion strategies in diesel engines converted to lean NG SI operation should minimize the amount of fuel burning in the squish region.
机译:在美国增加天然气使用量的一种解决方案是通过在进气歧管中增加一个气体喷射器,并用一个火花塞代替柴油喷射器,将现有的柴油发动机转换为天然气火花点火操作。这项研究提出了这种转换后的发动机内部火焰传播的实验和数值模拟结果。与火花点火发动机内部的传统火焰传播理论相比,结果表明,与向内挤压区域内较低的湍流强度相比,强大的径向向内运动和滚落相结合会导致碗内部产生强烈的湍流。点火后,独特的湍流分布将燃烧分为两个独立的事件:碗内有快速浓密​​的火焰,而挤压区域内有缓慢,稀薄和延迟的火焰,这是稀薄燃烧天然气火花所特有的。活塞碗内几何形状的点火燃烧。特别地,碗内部的高湍流增加了局部火焰速度。相比之下,压扁的湍流要低得多,再加上较高的表面积/体积比,降低了湍流的火焰速度。另外,通过燃烧定相来控制快燃和慢燃事件之间的重叠,该重叠确定了定相和压榨内部的燃料量。例如,提前在碗内燃烧会增加在燃烧后期阶段燃烧燃料的比例,这也增加了快燃和慢燃事件之间的相位差,并在表观放热率上产生了第二个峰值。由于压榨区域内不利的燃烧条件会增加一氧化碳和未燃烧的碳氢化合物的排放,因此本研究表明,转换为稀薄NG SI操作的柴油发动机的燃烧策略应将压榨区域内的燃料燃烧量降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号