首页> 外文期刊>Energy Conversion & Management >Performance analysis of a water-gas shift membrane reactor for integrated coal gasification combined cycle plant
【24h】

Performance analysis of a water-gas shift membrane reactor for integrated coal gasification combined cycle plant

机译:整体煤气化联合循环装置水煤气变换膜反应器性能分析

获取原文
获取原文并翻译 | 示例
           

摘要

In integrated gasification combined cycle (IGCC) systems, the water-gas shift reaction, which promotes the conversion of CO present in syngas mixtures into hydrogen, is an important step for hydrogen production. Application of the water-gas shift membrane reactor (WGSMR) in IGCC systems is an attractive option for CO2 capture compared with conventional methods because of smaller heat loss in gas purification and high CO conversion by selectively removing hydrogen from the reaction zone through the membrane. In this study, we proposed and evaluated commercial-scale WGSMR models combined with IGCC using reported laboratory-scale experimental data to optimize their operational parameters. Various models were developed using the Aspen Plus (R) Ver. 8.6 process simulator to investigate the impacts of hydrogen separation, pressure loss, and the flow direction between the sweep gas on the permeate side and syngas on the retentate side on the WGSMR performance with respect to CO conversion, H-2 yield, and reactor temperature. The membrane reactor model gave approximately 20% higher CO conversion than a reactor model without H-2 separation and approximately 4% lower CO conversion than a membrane reactor model with a pressure drop. A counter-current membrane reactor model gave approximately 2% higher CO conversion than a co-current model; the H-2 yield on the permeate side was 9.3% higher in the counter-current model by separation of H-2 through the membrane. A sensitivity analysis indicated that a high flow rate and low pressure of sweep gas are advantageous for H-2 recovery, and high catalyst loading and high syngas inlet temperature are preferable for higher CO conversion.
机译:在集成气化联合循环(IGCC)系统中,水煤气变换反应可促进合成气混合物中存在的CO转化为氢气,是制氢的重要步骤。与传统方法相比,将水煤气变换膜反应器(WGSMR)应用于IGCC系统是一种有吸引力的CO2捕获方法,因为气体净化过程中的热损失较小,并且通过选择性地从反应区中通过膜除去氢气,可以实现高的CO转化率。在这项研究中,我们提出并评估了商业规模的WGSMR模型与IGCC的结合,使用报告的实验室规模的实验数据来优化其运行参数。使用Aspen Plus(R)Ver。开发了各种模型。 8.6过程模拟器研究氢气分离,压力损失以及渗透物侧吹扫气体和渗余物侧合成气之间的流动方向对WGSMR性能的影响,这些影响与CO转化率,H-2收率和反应器温度有关。膜反应器模型的CO转化率比没有H-2分离的反应器模型高20%,而CO转化率比具有压力降的膜反应器模型低约4%。逆流膜反应器模型的CO转化率比并流模型高约2%。在逆流模型中,通过透过膜分离H-2,在渗透液侧的H-2收率提高了9.3%。敏感性分析表明,吹扫气的高流速和低压有利于H-2的回收,高催化剂负载量和高合成气入口温度对于提高CO转化率是优选的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号