...
首页> 外文期刊>Energy and Buildings >Ecological sanitation, organic animal farm, and cogeneration: Closing the loop in achieving sustainable development-A concept study with on-site biogas fueled trigeneration retrofit in a 900-bed university hospital
【24h】

Ecological sanitation, organic animal farm, and cogeneration: Closing the loop in achieving sustainable development-A concept study with on-site biogas fueled trigeneration retrofit in a 900-bed university hospital

机译:生态卫生,有机动物农场和热电联产:封闭实现可持续发展的循环-在拥有900张床位的大学医院中进行现场沼气三联产改造的概念研究

获取原文
获取原文并翻译 | 示例
           

摘要

Healthcare facilities mostly consume natural gas or fuel oil, utilize grid power, and are the second most energy intensive sector in the USA. Besides their high fossil fuel expenditures, hospital buildings generate large amounts of plumbing wastes and others, such that they are the largest producer of GHG emissions in the building sector. Energy costs are consuming up to 15% of their annual profits. In this paper the overall environmental and economic problems that may be associated especially with large healthcare facilities are addressed by showing ways to convert their energy and environmental disadvantages into advantages. In this respect, a concept study with ecological sanitation and formation of an energy, water, food, and education nexus by primarily employing a trigeneration system operating with biogas at an optimum fuel share with natural gas for retrofitting an existing 900-bed University hospital is presented. This case study covers two scenarios. The first scenario is the base scenario, which utilizes three trigeneration engines, with one 1,25 MWe, and two 2,2 MWe capacity each, all running on natural gas with a total capacity of 5,65 MWe. The second scenario includes three stages. The first stage mixes natural gas with biogas, which is to be produced on-site by primarily using plumbing wastes, for driving the 1,25 MWe engine, which satisfies the constant base load of the hospital for 24h a day. The second stage produces biogas by making use of the widely available surrounding free land of the hospital in a new eco-farm development and replaces the fuel input of the first 2,2 MWe engine, which operates 16 h a day on average. In the third stage the second trigeneration unit with 2,2 MWe capacity remains on natural gas fuel input and operates approximately 8 h a day (peaking engine). Both scenarios have an absorption cooling system with the same capacity and an 8 MWc-h ice tank. This common base of identical power, heat, and cold capacities was aimed to independently focus on the environmental and economic benefits of biogas substitution covering a ten-year operational period. The next system for stage two involves a new organic 6000 livestock-animal organic farm and a dairy factory to be owned by the University, which completes the food, water, energy, education and environment nexus and serves as a full-scale hands-on farm for the Department of Agriculture students and provide an R&D platform. It has been shown that such an application closes the loop towards sustain ability. The organic venture is expected to have a large economic impact and important contributions also on the dietary needs of the patients. The organic farm is envisioned to incorporate greenhouses, wind, and solar farms. Yet this study only covers the impact of the biogas supply to the trigeneration system: CO2 emissions from biogas generation is assumed to be captured and utilized for dry ice production. Analyses show that the additional cost of on-site biogas anaerobic digester and its ancillaries of the. first-stage (1,25 MWe) may pay back themselves in four years. The corresponding prediction for the second stage biogas trigeneration system with biogas fuel (2,2 MWe) is also four years.
机译:医疗保健机构主要消耗天然气或燃料油,利用电网电力,并且是美国第二大能源密集型部门。除了高昂的化石燃料支出外,医院建筑还产生大量的管道废物和其他废物,因此它们是建筑部门最大的温室气体排放产生者。能源成本消耗了其年度利润的15%。在本文中,通过展示将其能源和环境劣势转化为优势的方法,解决了尤其是与大型医疗机构相关的整体环境和经济问题。在这方面,一项概念研究涉及生态卫生并形成能源,水,食物和教育纽带,主要是采用三联发电系统,该系统以沼气为燃料,以天然气为燃料,以最佳方式改造现有的900张病床的大学医院提出了。本案例研究涉及两种情况。第一种方案是基本方案,该方案使用三个三代发电机,每个具有一个1,25 MWe的容量和两个2,2 MWe的容量,全部使用天然气发电,总容量为5,65 MWe。第二种情况包括三个阶段。第一阶段将天然气与沼气混合,这将主要通过使用管道废物在现场生产,以驱动1,25 MWe发动机,该发动机每天可满足医院24小时的恒定基本负荷。第二阶段通过在新的生态农场开发中利用医院周围广泛可用的闲置土地来生产沼气,并取代第一台2,2 MWe发动机的燃料输入,该发动机平均每天工作16小时。在第三阶段,容量为2.2 MWe的第二台三联产机组仍使用天然气燃料输入,每天运行约8小时(峰值发动机)。两种方案都具有容量相同的吸收式冷却系统和8 MWc-h的冰箱。这种具有相同功率,热力和冷能力的共同基础旨在独立地关注涵盖十年运营期的沼气替代的环境和经济利益。第二阶段的下一个系统涉及大学将拥有的一个新的有机6000家畜-动物有机农场和一个乳品厂,该工厂将完成食物,水,能源,教育和环境之间的联系,并作为全面的动手实践农业系学生的农场,并提供研发平台。已经表明,这种应用封闭了维持能力的循环。预期该有机产品将对患者的饮食需求产生巨大的经济影响和重要贡献。设想有机农场将包括温室,风能和太阳能农场。然而,本研究仅涵盖了沼气供应对三联产系统的影响:沼气产生的CO2排放被假定为捕获并用于干冰生产。分析表明,现场沼气厌氧消化池及其辅助设施的额外费用。第一阶段(1.25 MWe)可能会在四年内收回投资。使用沼气燃料(2.2 MWe)的第二阶段沼气三联产系统的相应预测也为四年。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号