首页> 外文期刊>ELECTROPHORESIS >Free-solution electrophoretic separations of DNA–drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength†
【24h】

Free-solution electrophoretic separations of DNA–drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength†

机译:在没有聚合物网络且在电场强度增加时没有分辨率损失的玻璃微芯片上,DNA-阻滞-标记结合物的自由溶液电泳分离†

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA–protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of free-solution conjugate electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. ssDNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA 400 bases in length. FSCE's ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with poly(N-hydroxyethylacrylamide)-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags.
机译:在这里,我们证明了在没有筛分介质和出色重复性的情况下,高分辨电泳分离高硼硅玻璃微流控芯片中的ssDNA-蛋白质结合物的潜力。使用结合到中等阳离子蛋白聚合物阻滞标签上的两种不同长度的多核苷酸,我们测量了分离效率与施加电场的关系。与Slater等人先前的理论预测非常一致,发现随着施加电场增加到700 V / cm(我们能够施加的最高电场),分辨率保持恒定。这一非凡的结果说明了与基于基质的DNA电泳相比,基于游离溶液共轭电泳(FSCE)的DNA分离的根本不同的物理限制。随着电场强度的增加,“凝胶”中的ssDNA分离始终显示出迅速下降的分辨率。对于长度> 400个碱基的ssDNA尤其如此。 FSCE将DNA峰分辨率与施加的电场分离的能力表明,芯片上超快速FSCE测序的未来可能性。我们使用六种不同的蛋白质聚合物阻滞标签,研究了硼硅酸盐玻璃微芯片上FSCE分离峰展宽的来源。对于具有四个或更多正电荷的阻滞标签,与聚(N-羟乙基丙烯酰胺)涂层的微通道壁的静电和吸附相互作用导致明显的谱带展宽,而具有几乎电荷中性的蛋白质阻滞标签的生物缀合物则观察到更陡峭的峰。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号