...
首页> 外文期刊>IEEE Electrical Insulation Magazine >Gas generation in natural ester and mineral oil under partial discharge and sparking faults
【24h】

Gas generation in natural ester and mineral oil under partial discharge and sparking faults

机译:局部放电和火花故障下天然酯和矿物油中的气体生成

获取原文
获取原文并翻译 | 示例
           

摘要

Mineral oil has been widely used in power transformers for more than a century because of its excellent dielectric and thermal characteristics. However, it is nonbiodegradable and could cause serious environmental problems if leakages or spills occurred. With increasingly strict environment rules and regulations, esters are sometimes used instead of mineral oil in transformers rated up to 245 kV [1]. Esters have different molecular structures than do mineral oils and thus different physical, dielectric, and chemical properties. They also have higher viscosities, and so higher temperatures are required for the impregnation of cellulose insulation [2]; higher viscosity also lowers cooling efficiency and increases the operating temperature of the transformer [3]. Esters are more hygroscopic than mineral oil and thus have higher absolute water content (ppm); their dielectric strength decreases with increasing relative humidity in a way similar to mineral oil [4]. In a quasi-uniform electric field, esters generally show breakdown strengths comparable to those of mineral oils. In a divergent field, discharges in the esters propagate faster and further than in mineral oils at the same voltage level, and hence the esters exhibit higher partial discharge (PD) repetition rates under AC stress [5], [6] and lower lightning impulse breakdown voltages, especially at large gaps [7], [8]. Accordingly, the design and operation of ester-filled power transformers need to be carefully considered. Dissolved gas analysis (DGA) is a common technique used to diagnose incipient faults in mineral-oil-filled transformers [9]?????????[11]. Before the introduction of online monitors, DGA involved periodic oil sampling followed by laboratory analysis of the gas components dissolved in the oil. In the past decade, an increasing number of multi-gas online monitors have become commercially available, enabling almost continuous monitoring of gassing in service [12]. In recent years, some studies of- fault gas generation in esters have been reported [13]?????????[21]. It was found that, under thermal faults, the fault gases generated in esters are similar to those generated in mineral oils, although the molecular structures of esters are different [13]. The generation rate of dissolved gases in natural esters is slightly lower than in mineral oils, and natural esters are particularly stable under medium-temperature thermal faults [14], [22]. Ethane is generated in natural esters if exposed to oxygen under normal operating temperatures (<140??????C) [23]; under thermal faults up to 600??????C, ethane and carbon oxides account for more than 70% of fault gas generation [15], [22]. When subjected to PD, esters generate a higher level of dissolved gases (mostly hydrogen) than do mineral oils [18]. Under breakdown, similar concentrations of dissolved fault gases (mainly acetylene) are generated in esters and in mineral oils [16]. The interpretation of DGA data for esters needs to be improved, particularly the classification boundaries between medium-temperature and high-temperature thermal faults, and between low-energy and high-energy discharges [13], [20].
机译:矿物油由于其优异的介电和热特性,已在电力变压器中广泛使用了一个多世纪。但是,它是不可生物降解的,如果发生泄漏或溢出,可能会导致严重的环境问题。随着环境法规越来越严格,在额定电压高达245 kV的变压器中,有时会用酯代替矿物油[1]。酯具有与矿物油不同的分子结构,因此具有不同的物理,介电和化学性质。它们还具有更高的粘度,因此浸渍纤维素绝缘材料需要更高的温度[2]。较高的粘度还会降低冷却效率并提高变压器的工作温度[3]。酯比矿物油更易吸湿,因此具有更高的绝对水含量(ppm);它们的介电强度随着相对湿度的增加而降低,其方式类似于矿物油[4]。在准均匀电场中,酯通常显示出与矿物油相当的击穿强度。在相同的电压水平下,在发散场中,酯的放电比矿物油传播得更快,更远,因此酯在交流应力[5],[6]和较低的雷电冲击下表现出更高的局部放电(PD)重复率。击穿电压,尤其是在较大的间隙处[7],[8]。因此,需要仔细考虑酯类填充电力变压器的设计和操作。溶解气体分析(DGA)是用于诊断矿物油填充变压器初期故障的常用技术[9] ?????? [11]。在引入在线监测器之前,DGA涉及定期对油进行采样,然后对溶解在油中的气体成分进行实验室分析。在过去的十年中,越来越多的多气体在线监测仪已经投入商业使用,几乎可以连续监测服务中的气体[12]。近年来,已经报道了一些在酯中产生故障气体的研究[13]-[21]。已经发现,在热断裂下,尽管酯的分子结构不同,但在酯中产生的断裂气与在矿物油中产生的断裂气相似[13]。天然酯中溶解气体的生成速率略低于矿物油,并且天然酯在中温热断层中特别稳定[14],[22]。如果在正常工作温度(<140℃)下暴露于氧气,乙烷会在天然酯中生成[23];在高达600℃的热断层下,乙烷和碳氧化物占断层气体产生的70%以上[15],[22]。当经受PD时,与矿物油相比,酯会产生更高水平的溶解气体(主要是氢)[18]。分解后,在酯类和矿物油中会产生相似浓度的溶解断层气(主要是乙炔)[16]。酯的DGA数据的解释需要改进,特别是中温和高温热故障之间,低能和高能放电之间的分类边界[13],[20]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号