...
首页> 外文期刊>Electrical Engineers, Journal of the Institution of >Measurements and calculation on restriking-voltage transients at a substation fed by single-core cables
【24h】

Measurements and calculation on restriking-voltage transients at a substation fed by single-core cables

机译:单芯电缆馈电的变电站的再励电压瞬变的测量和计算

获取原文
   

获取外文期刊封面封底 >>

       

摘要

For a circuitfbreaker operating at the end of a long feeder the feature determining the rate of rise of restriking voltage is the effective surge impedance of the feeder. A previous paperf dealt with the effective surge impedances and calculation of fronts of transients of restriking voltagefor substations fed through 3-core belted-type cables. The present paper deals with the surge impedance in various phase combinations of feeders consisting of three single-core paper-insulated double lead-sheathed cables laidin trefoil, and gives methods by Avhich effective surge impedances may be calculated for systems of known constants. Effective surge impedances deduced from measurements taken with the restriking-voltage indicator are compared with values deduced from calculations taking account of transient currents in the cable sheaths, and it is concluded that the agreement obtained is sufficiently good to show that all important relevant features are properlyaccounted for. As a rough guide it may be said that the effective surge impedance per phase of a system such as is described, is about 0.75¿(L/C), where L is the effective power-frequency star inductance per unitlengthand C the core-to-sheath capacitance per unit length of the cable. This L and C are of course the values normally supplied by manufacturers. The inherent rate of rise of voltage for a fault current of I r.m.s. amperesin a breaker fed by such a cable is 2¿(2)¿¿I × (effective surge impedanceobtained as described), i.e. for a 50-cycle system it is (0.44×10¿3I × surge impedance) volts per microsecond. The constant 0.75 in the above is an average obtained from empirical values for different cable arrangements, but if a more accurate determination is required for anypractical cable arrangement it is shown how this can be determined from firstprinciples.
机译:对于在长馈线末端工作的断路器,确定再启动电压上升速率的特征是馈线的有效浪涌阻抗。先前的论文f讨论了有效的浪涌阻抗和通过3芯带式电缆馈电的变电站的再启动电压瞬变的前沿计算。本文研究了由三根单芯纸绝缘双铅护套电缆敷设在三叶形组成的馈线在各种相位组合中的浪涌阻抗,并给出了用Avhich的方法可以计算出已知常数的有效浪涌阻抗。将使用限制电压指示器进行的测量得出的有效浪涌阻抗与考虑电缆护套中的瞬态电流的计算得出的值进行了比较,得出的结论是,所取得的协议足以表明所有重要的相关特征均得到正确说明对于。作为一个粗略的指导,可以说,所描述的系统每相的有效电涌阻抗约为0.75°C(L / C),其中L是有效的工频星型电感每单位长度和C电缆每单位长度的芯-鞘电容。该L和C当然是制造商通常提供的值。故障电流为I.m.s.时的固有电压上升率。用这样的电缆馈电的断路器的安培数为2××(2)×××××××(有效浪涌阻抗为描述),即对于一个50周期的系统,它是每微秒(0.44×10 – 3×3I×浪涌阻抗)伏特。上面的常数0.75是从不同电缆布置的经验值获得的平均值,但是如果需要对任何实用的电缆布置进行更精确的确定,则将显示如何从第一原理确定该平均值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号