...
首页> 外文期刊>Economic Geology >Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types
【24h】

Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types

机译:铀分馏过程随时间的演变:推动铀矿床类型的长期变化

获取原文
获取原文并翻译 | 示例
           

摘要

Uranium deposit types have evolved considerably from the Archean to the Present. The major global drivers were (1) change of geotectonic conditions during the Late Archean, (2) strong increase of atmospheric oxygen from 2.4 to 2.2 Ga, and (3) development of land plants during the Silurian. Other significant variations of uranium deposit types are related to unique conjunctions of conditions such as those during phosphate sedimentation in the Cretaceous. Earth’s uranium fractionation mechanisms evolved through four major periods. The first, from 4.55 and 3.2 Ga, corresponds to formation of a thin essentially mafic crust in which the most fractionated trondheimite-tonalite-granodiorite (TTG) rocks attained uranium concentrations of at most a few parts per million. Moreover, the uranium being essentially hosted in refractory accessory minerals and free oxygen being absent, no uranium deposit could be expected to have formed during this period. The second period, from about 3.1 to 2.2 Ga, is characterized by several widespread pulses of highly fractionated potassic granite strongly enriched in U, Th, and K. Late in this period peraluminous granite was selectively enriched in U and to a lesser extent K. These were the first granite and pegmatite magmas able to crystallize high-temperature uraninite. The erosion of these granitic suites liberated thorium-rich uraninite which would then be concentrated in placer deposits along with pyrite and other heavy minerals (e.g., zircon, monazite, Fe-Ti oxides) within huge continental basins (e.g., Witwatersrand, South Africa, and Bind River, Canada). The lack of free oxygen at that time prevented oxidation of the uraninite which formed the oldest economic uranium deposit types on Earth, but only during this period. The third period, from 2.2 to 0.45 Ga, records increased oxygen to nearly the present atmospheric level. Tetravalent uranium from uraninite was oxidized to hexavalent uranium, forming highly soluble uranyl ions in water. Uranium was extensively trapped in reduced epicontinental sedimentary successions along with huge quantities of organic matter and phosphates accumulated as a consequence of biological proliferation, especially during the Late Paleoproterozoic. A series of uranium deposits formed through redox processes; the first of these developed at a formational redox boundary at about 2.0 Ga in the Oklo area of Gabon. All known economically significant uranium deposits related to Na metasomatism are about 1.8 Ga in age. The high-grade, large tonnage unconformity-related deposits also formed essentially during the Late Paleoproterozoic to early Mesoproterozoic. The last period (0.45 Ga-Present) coincided with the colonization of continents by plants. The detrital accumulation of plants within continental siliciclastic strata represented intraformational reduced traps for another family of uranium deposits that developed essentially only during this period: basal, roll front, tabular, and tectonolithologic types. However, the increased recognition of hydrocarbon and hydrogen sulfide migration from oil or gas reservoirs during diagenesis suggests potential for sandstone-hosted uranium deposits to be found within permeable sandstone older than the Silurian. Large uranium deposits related to high-level hydrothermal fluid circulation and those related to evapotranspiration (calcretes) are only known during this last period of time, probably because of their formation in near-surface environments with low preservation potential.
机译:从太古代 到现在,铀矿床类型已发生了很大的变化。主要的全球驱动因素是(1)太古宙晚期的 构造条件的变化,(2)大气氧从2.4 Ga急剧增加 和(3)发育志留纪时期 的陆地植物。铀矿床类型的其他显着变化 与条件的唯一结合 有关,例如白垩纪磷酸盐沉积过程中的条件。地球的铀分馏机制 经历了四个主要时期。第一个位于4.55和 3.2 Ga中,对应于薄的基本镁铁质 地壳的形成,其中最细碎的trondheimite-tonalite-granodiorite ( TTG)岩石达到的铀浓度最多为百万分之几。此外,铀基本上是 所含的难熔辅助矿物,而游离氧却不存在, 在此时期内不会形成铀沉积。第二个时期,从大约3.1 Ga到2.2 Ga,其特征是强烈富集了U,Th和K的几个广泛分馏的高度分级的钾质 花岗岩。 高铝花岗岩选择性地富集到U中,而K含量较小。这是第一个能够使高温尿素矿结晶的花岗岩和伟晶岩 岩浆。 。这些花岗岩套件的腐蚀 释放出富or的铀矿,然后将其与黄铁矿 和其他重矿物(例如,锆石,独居石,Fe-Ti氧化物) 在巨大的大陆盆地(例如,南非威特沃特斯兰德, 和加拿大宾德河)。当时缺乏游离氧 防止了铀矿的氧化,这种铀矿形成了地球上最古老的 经济铀矿床类型,但仅在此 期内。第三阶段,从2.2 Ga到0.45 Ga,记录使 氧气增加到接近目前的大气水平。铀矿中的四价铀被氧化为六价铀,从而在水中形成高可溶性铀离子。铀广泛地被 困在沿 的减少的陆相陆相沉积演替中,由于生物增殖,特别是在 sup>期间,积累了大量的有机质和磷酸盐 。 sup> 古元古代晚期。通过氧化还原过程形成的一系列铀矿床 ;其中第一个在加蓬Oklo地区约2.0 Ga的地层 氧化还原边界处发育。所有与Na 致突变作用相关的 经济上重要的铀矿床年龄约为1.8 Ga。在古元古代晚期至中元古代以前,高品位,大型 与不整合面有关的沉积物也基本上形成了 。末期(sup> (0.45 Ga-Present)与植物对大陆的定植(sup> )相吻合。大陆硅质碎屑岩层中植物 的碎屑积累代表了另一个时期仅在此期间发展出 的铀矿床的构造内 减少的圈闭:基础,卷前,表格, 和构造岩性类型。但是,成岩过程中从油气储集层中迁移出来的碳氢化合物和硫化氢的认识逐渐增加,这表明有可能发现砂岩型铀矿床。在比志留纪更早的 渗透性砂岩中。与高水平 热液循环有关的大型铀矿床和与蒸散 (方石)有关的铀矿床仅在最近的这段时间内才知道, 可能是由于它们形成于近地表环境中 具有较低的保存潜力。

著录项

  • 来源
    《Economic Geology》 |2010年第3期|00000553-00000569|共17页
  • 作者

    Michel Cuney;

  • 作者单位

    Nancy Université, UMR G2R 7566 CNRS-CREGU, BP 70239–54 506 Vandoeuvre Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号