首页> 外文期刊>Frontiers in Systems Neuroscience >Notes on Visual Cortical Feedback and Feedforward Connections
【24h】

Notes on Visual Cortical Feedback and Feedforward Connections

机译:有关视觉皮质反馈和馈电连接的注意事项

获取原文
       

摘要

Introduction Feedforward (FFD) – feedback (FBK) cortical processing ultimately needs to be considered in the context of whole-brain activation, including interactions with cortico-thalamo-cortical, callosal, and the excitatory and inhibitory intrinsic cortical circuits. For the non-human primate (NHP) brain, however, identifying cell types and deciphering the patterns and metrics of axon convergence and divergence is challenging (cf. Rockland, 2019 , 2020 ) and, at the level of detail approachable in the mouse brain, may still be years away. Many of the comments put forth here are not novel and echo previous reports (including my own, Rockland, 1997 ). My goal has been to briefly re-consider what have become key features of FFD-FFK connections in the early visual cortical pathway, with emphasis on the cellular and dendritic circuitry components. Owing to sparsity of data in NHP concerning the role of interneuron subpopulations in microcircuitry, these are not discussed. For detailed reports on visual cortical connectivity and physiological response properties (see Bullier, 2004 ; Douglas and Martin, 2007 ; Shipp, 2007 , 2016 ; Markov et al., 2014a , b ; Angelucci et al., 2017 ; Vanni et al., 2020 ; Vezoli et al., 2021 , among others). Although area V1 is a canonical “start point” for discussing FFD-FBK cortical processes, it is actually something of an outlier; that is, there are cortico-thalamic, but not cortico-cortical FBK projecting neurons in V1; and FFD terminations are of thalamic, but not cortical origin. There are few or no callosal connections. Thus, a strict comparison of cortical FFB and FBK connections is better addressed in extrastriate areas V2, V3, V4, MT, or TEO. Much of the following discussion is written as applying to V2. Neurons of Origin As repeatedly summarized in the literature (e.g., Kennedy and Bullier, 1985 : Rockland, 1997 , 2019 ; Douglas and Martin, 2007 ; Markov et al., 2014a , b ; Anderson and Martin, 2016 ; Angelucci et al., 2017 , among others), FFD projecting neurons from V2 (to V4 and MT) and FBK projecting neurons (to V1) are differentially located in deeper layer 3 (FFD) or layers 2, 3A, 5, and 6 (FBK). The FFD-FBK laminar dissociation, despite a minor degree of laminar intermingling, has been largely confirmed by injections of two distinguishable retrograde tracers in V1 and V4 ( Markov et al., 2014b ; and see Figure 1), where less than 1% of cortically projecting cells in V2 (and 2.2% in V3) were double labeled (i.e., had branching collaterals to both V1 and V4). The further characteristics of these bifurcating, link neurons, and their postsynaptic targets, are unknown. Are they more frequent in the less investigated peripheral visual representation of V2, or for other combinations (e.g., injections in V1 and MT)? The most numerous FBK population is in layer 6 (see estimates in Table 3 in Rockland, 1997 ; Markov et al., 2014a , b ). Along with the smaller number of layer 5 FBK neurons, this infragranular distribution overlaps with that of several cortico-subcortical projecting populations (cortico-collicular, cortico-striatal, or cortico-thalamic projecting neurons in layer 5, and cortico-thalamic or cortico-claustral neurons in layer 6; summarized in Shipp, 2007 ). Appropriate double retrograde tracer experiments have not been done to probe for collateralization of cortico-cortical and cortico-subcortical axons. Whether these neuronal subpopulations are spatially clustered or distributed in a salt-and-pepper pattern has not been established (but see Hawken et al., 2020 for “functional clusters” in V1). Neuronal Subtypes Feedback and feedforward neurons are excitatory pyramidal neurons, although a small number of GABAergic FBK neurons, probably positive for nitric oxide or somatostatin, are found in the supragranular layers of V2 after viral infection in V1 ( Tomioka and Rockland, 2007 ). Pyramidal subtypes can be more finely distinguished, in part by dendritic morphology. Supragranular neurons extend their apical dendrite into layer 1. For layer 6 neurons and many layer 5 FBK neurons, the apical dendrite extends only into layer 3. A subset of layer 5 neurons send apical dendrites to layer 1 (Golgi stains: Lund et al., 1981 ); and intracellular fills of tracer identified FFD projection neurons demonstrated about half (4 of 9 neurons) having apical dendrites that extend to layer 1 ( Markov et al., 2014b ). Soma depth is significant, in that shorter apical dendrites, even of neurons in the same layer, are reported to be less excitable (in mice: Galloni et al., 2020 ). By comparison, five subtypes of morphologically distinct cortico-geniculate (CG) neurons in V1 and at least three subtypes in V2 have been identified ( Briggs et al., 2016 ). Heterogeneity of CG neurons is supportive of some degree of parallel processing (“…not one circuit, but rather a collection of distinct circuits conveying unique [visual] feature information and operating on a corresponding variety o
机译:引言前馈(FFD) - 反馈(FBK)皮质加工最终需要在全脑激活的背景下考虑,包括与Cortico-Thalamo-Cortical,调用和兴奋性和抑制内在皮质电路的相互作用。然而,对于非人类灵长类动物(NHP)脑(NHP)脑,鉴定细胞类型并解密轴突收敛和分歧的模式和度量是具有挑战性的(参见ROCKLAND,2019,2020),并且在小鼠脑中可接近的细节水平。 ,可能仍然是几年之遥。这里提出的许多评论不是新的和以前的报告(包括我自己的Rockland,1997)。我的目标是简要重新考虑早期视觉皮质途径中FFD-FFK连接的关键特征,重点是蜂窝和树突电路组件。由于NHP中的数据稀少有关微电路中的Interneuron亚群的作用,但没有讨论这些。有关视觉皮质连接和生理响应性质的详细报告(参见Bullier,2004; Douglas和Martin,2007; Shipp,2007,2016; Markov等,2014,B; Angelucci等,2017; Vanni等, 2020; Vezoli等人。,2021等)。虽然区域V1是规范的“开始点”,用于讨论FFD-FBK皮质过程,但它实际上是一个异常值;也就是说,有皮质炎,但没有皮质皮质FBK突出的神经元在V1中;和FFD终端是丘脑,但没有皮质起源。很少或没有调用连接。因此,在壳体区域V2,V3,V4,MT或TEO中更好地寻址皮质FFB和FBK连接的严格比较。以下大部分讨论都被编写为申请V2。在文献中重复总结的原产地(例如,肯尼迪和牛年,1985年:Rockland,1997,2019; Douglas和Martin,2007; Markov等,2016; Anderson和Martin,2016; Angelucci等,其中包括来自V2(至V4和MT)和FBK突出神经元(至V1)的FFD突出的神经元差别位于深层3(FFD)或层2,3a,5和6(FBK)中。 FFD-FBK层层解离,尽管层间嵌入很小,但通过在V1和V4中注射了两个可区分的逆行示踪剂(Markov等,2014b;和见图1),其中不到1%在V2中的显微突出的细胞(v3中的2.2%)是双标记的(即,向V1和V4两者的分支省略)。这些分叉,链接神经元及其突触靶标的其他特征是未知的。它们在V2的较少研究的外周视觉表示中更频繁,或用于其他组合(例如,在V1和MT中注射)?最多的FBK人口在第6层中(参见Rockland的表3估计,1997年;马尔可夫等人,2014A,B)。随着较少数量的第5层FBK神经元,这种基本的分布与几种皮质突出的突出群体(皮质细胞,皮质纹纹,或在第5层中的皮质 - 丘脑突出神经元,以及皮质 - 丘脑或皮质 - 第6层中的猫神经元;在Shipp,2007年汇总了)。尚未对皮质皮质和皮质皮质轴突抵押的探针进行适当的双逆行示踪试验。尚未建立这些神经元亚离子是否在盐和胡椒图案中分布在盐和胡椒图案中(但是在V1中看到Havken等人,2020,用于“功能簇”)。神经元亚型反馈和前馈神经元是兴奋性金字塔神经元,尽管在V1(Tomioka和Rockland,2007)中的病毒感染后的V2的Supragranular层中发现了少量的甘蓝型FBK神经元。可以更精细地区分金字塔亚型,部分地由树突形态进行细化。 Suprangranular neurons将其顶端枝晶延伸到层1中。对于层6神经元和许多层5层,顶端树突仅延伸到第3层中。第5层神经元的子集向第1层发送顶端树突(Golgi污渍:Lund等人。 ,1981年);跟踪器的细胞内填充鉴定的FFD投影神经元显示约一半(9个神经元),其具有延伸到第1层的顶端树枝状(Markov等,2014b)。据报道,Soma Depth,在那个较短的顶端树突中,甚至是同一层中的神经元的神经元均不剧(在小鼠中:Galloni等,2020)。相比之下,已经鉴定了V1中的5个形态学上不同的皮质胰酶(CG)神经元的五个亚型,并且已经鉴定了V2中的至少三种亚型(Briggs等,2016)。 CG神经元的异质性是支持一定程度的平行处理(“不是一个电路,而是传送独特的[Visual]特征信息并在相应的品种O上运行的不同电路的集合

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号