首页> 外文期刊>Coatings >Marangoni Convection of Dust Particles in the Boundary Layer of Maxwell Nanofluids with Varying Surface Tension and Viscosity
【24h】

Marangoni Convection of Dust Particles in the Boundary Layer of Maxwell Nanofluids with Varying Surface Tension and Viscosity

机译:MAXWELL纳米流体边界层粉尘颗粒的MARANGONI对流,具有不同的表面张力和粘度

获取原文
           

摘要

The flow of nanofluids is very important in industrial refrigeration systems. The operation of nuclear reactors and the cooling of the entire installation to improve safety and economics are entirely dependent on the application of nanofluids in water. Therefore, a model of Maxwell’s dusty nanofluid with temperature-dependent viscosity, surface suction and variable surface tension under the action of solar radiation is established. The basic equations of momentum and temperature of the dust and liquid phases are solved numerically using the MATLAB bvp4c scheme. In the current evaluation, taking into account variable surface tension and varying viscosity, the effect of dust particles is studied by immersing dust particles in a nanofluid. Qualitative and quantitative discussions are provided to focus on the effect of physical parameters on mass and heat transfer. The propagation results show that this mixing effect can significantly increase the thermal conductivity of nanofluids. With small changes in the surface tension parameters, a stronger drop in the temperature distribution is observed. The suction can significantly reduce the temperature distribution of the liquid and dust phases. The stretchability of the sheet is more conducive to temperature rise. The tables are used to explain how physical parameters affect the Nusselt number and mass transfer. The increased interaction of the liquid with nanoparticles or dust particles is intended to improve the Nusselt number. This model contains features that have not been previously studied, which stimulates demand for this model among all walks of life now and in the future.
机译:纳米流体的流动在工业制冷系统中非常重要。核反应堆的运行和整个安装的冷却,以改善安全性和经济性,完全取决于纳米流体在水中的应用。因此,建立了在太阳辐射作用下具有温度依赖性粘度,表面吸力和可变表面张力的Maxwell粉尘纳米流体的模型。使用MATLAB BVP4C方案在数值上求解灰尘和液相的动量和温度的基本方程。在目前的评价中,考虑到可变表面张力和变化粘度,通过将粉尘颗粒浸入纳米流体中来研究粉尘颗粒的效果。提供定性和定量讨论,专注于物理参数对质量和传热的影响。传播结果表明,这种混合效果可以显着提高纳米流体的导热率。随着表面张力参数的小变化,观察到温度分布的更强的下降。吸力可以显着降低液体和粉尘阶段的温度分布。片材的拉伸性更有利于温度升高。表格用于解释物理参数如何影响营养数和传质。液体与纳米颗粒或粉尘颗粒的相互作用增加旨在改善营养数。该模型包含尚未研究过的功能,这在现在和将来的各行各业中刺激了对该模型的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号