首页> 外文期刊>Clinical and Translational Medicine >Single‐cell RNA sequencing infers the role of malignant cells in drug‐resistant multiple myeloma
【24h】

Single‐cell RNA sequencing infers the role of malignant cells in drug‐resistant multiple myeloma

机译:单细胞RNA测序患有恶性细胞在耐药多发性骨髓瘤中的作用

获取原文
           

摘要

Dear Editor, Using single‐cell RNA‐sequencing (scRNA‐seq), we identified special populations that might be involved in the progression of drug resistance and various poor prognostic biomarkers in multiple myeloma (MM). Although the overall treatment outcomes of MM have been improved, ~(1) challenges still exist in relapsed MM due to the lack of effective drugs and predictive biomarkers. ~(2) , ~(3) ScRNA‐seq has been applied to unbiasedly identify the cellular heterogeneity and novel biomarkers. ~(4) , ~(5) To unravel the tumour microenvironment dynamics associated with carcinogenesis and survey cellular heterogeneity in MM, we performed scRNA‐seq on bone barrow cells from 3 primary (newly diagnosed), 1 recurrent, 3 drug‐resistant MM and 1 healthy donor (Figure S1A and C ; Table S1 ; Supplementary materials). After rigorous quality control (Figure S1B ; Supplementary materials), 52?793 cells were obtained for further analysis based on known marker genes and differentially expressed genes (DEGs) (Table S2 ). Notably, we retrieved B cells, T cells, NK cells, myeloid cells, DCs, erythrocytes, haematopoietic progenitor cells (HPCs) (Figure? 1A ) and key marker genes in these clusters, that is NKG7 for NK cells, CD34 for HPCs and MZB1 for B cells (Figure? 1B ). Further, we found B, T and myeloid cells were highly enriched in drug‐resistant MM (Figure? 1C and E ), suggesting that B cells, T cells and myeloid cells might be involved in the progression of drug resistance in MM. Our results showed substantial variation in B cells proportion in MM compared with control group (Figure? 1D ). FIGURE 1 Single‐cell transcriptional profiles in multiple myeloma (MM). (A) Identification of cellular types using single cells of human multiple myeloma. (B) Dot plot showing the canonical marker genes in 7 cellular types. (C) UMAP plot showing the distribution of cells in different conditions including control group, primary MM, recurrent MM and drug‐resistant MM. (D) Cell type proportion of all patients with or without MM. (E) Cell type proportion of cellular types in different conditions including control group, primary MM, recurrent MM and drug‐resistant MM. UMAP: Uniform Manifold Approximation and Projection; Pt: patients We then focus on B cells, T cells and myeloid cells using unsupervised clustering and Uniform Manifold Approximation and Projection (UMAP). ~(6) First, B cells were clustered into 12 clusters or four subgroups according to gene expression of MS4A1, CD19, SDC1 and MKI67 (Figure? 2A and B ; Table S3 ). Clusters 1, 3, 5 and 7 were predominantly enriched in drug‐resistant group, and cluster 1 and 7 are proliferating/cycling cells with high expression of MKI67 (Figure? 2B and C ), suggesting that B cells proliferation may contribute to the progression of drug resistance of MM. Besides, we calculated the large‐scale chromosomal copy number variations (CNV) to distinguish the malignant B cells from normal cells. ~(7) Drug‐resistant MM showed remarkably highest CNV levels among groups (Figure? 2D ). Interestingly, cluster 5 malignant B cells that is significantly enriched in drug‐resistant MM ( p ?&?.05, χ ~(2) test) (Figure? 2C ) exhibited high CNV levels (Figure? 2D and E ), suggesting that cluster 5 B malignant cells were the major source of malignant cells in drug resistance. Further, we focused on cluster 5 and identified DEGs through the comparison of drug‐resistant MM versus primary MM (Figure? 2F ; Table S4 ) and found several marker genes in this subpopulation including CD27. By ordering these cells to reconstruct pseudo‐time trajectories, ~(8) we observed cluster 5 cells bifurcated to 2 branches, the drug‐resistant MM and the relapsed MM, suggesting distinct cellular differentiation paths of these two MM stages (Figure? 2G ). Importantly, we identified novel genes of CCL4, TNFRSF17, LMAN2 and MZB1 that were positively correlated with drug resistance (Figure? 2H ). Concordantly, the patients with higher expression of these genes [i.e., CCL4 ( p ?=?.017), TNFRSF17 ( p ?=?.0082), LMAN2 ( p ?=?.025) and MZB1 ( p ?=?.016)] had poorer prognosis than those with low expression (Figure? 2I ). This data further supports that cluster 5 cells expressing CCL4, TNFRSF17, LMAN2 and MZB1 contribute to drug resistance. FIGURE 2 Transcriptional landscape of B cells in MM. (A) UMAP plot suggesting identification of cellular subtypes in B cells. (B) Scatterplot showing expression of marker genes in B cells; (C) Cell type proportion of cellular subtypes in B cells in different conditions including control group, primary MM, recurrent MM and drug‐resistant MM. (D) Heat map showing large‐scale CNVs of B cells from 8 patients. The red colour represents high CNV level and blue represents low CNV level. (E) The distribution of malignant cells in different conditions including control group, primary MM, recurrent MM and drug‐resistant MM. (F) Differentially expressed gene profiles along malignant progression. (G) Pseudo‐time
机译:亲爱的编辑器,使用单细胞RNA测序(ScRNA-SEQ),我们确定了可能参与耐药性和多种骨髓瘤(MM)中的各种贫困预后生物标志物的特殊种群。虽然MM的整体治疗结果得到了改善,但由于缺乏有效的药物和预测生物标志物,复发MM仍存在〜(1)挑战。 〜(2),〜(3)SCRNA-SEQ已被应用于无偏见鉴定细胞异质性和新型生物标志物。 〜(4),〜(5)揭开与致癌和调查细胞异质性相关的肿瘤微环境动态,我们在骨库中对3初级(新诊断的),1次耐药性,3种耐药mM进行骨库细胞进行瘢痕基-SEQ和1个健康的供体(图S1A和C;表S1;补充材料)。经过严格的质量控制(图S1B;补充材料),获得52〜793个细胞,用于进一步分析,基于已知的标记基因和差异表达基因(DEGS)(表S2)。值得注意的是,我们在这些簇中检索了B细胞,T细胞,NK细胞,骨髓细胞,DC,红细胞,血吞噬祖细胞(HPC)(图α1A)和关键标记基因,即NK细胞的NKG7,用于HPC的CD34和B细胞的MZB1(图?1B)。此外,我们发现B,T和髓细胞在耐药MM(图α1C和e)中高度富集,表明B细胞,T细胞和骨髓细胞可能涉及MM的耐药性的进展。我们的结果表明,与对照组(图1D)相比,MM的B细胞比例大幅变化(图1D)。图1多个骨髓瘤(mm)中的单细胞转录谱。 (a)使用人多种骨髓瘤的单细胞鉴定细胞类型。 (b)点图显示7个细胞类型中的规范标记基因。 (c)UMAP图显示在不同条件下细胞分布,包括对照组,初级mm,复发mM和药物耐药MM。 (d)所有患者的细胞类型比例或没有mM的患者。 (e)细胞型细胞类型在不同条件下的细胞类型,包括对照组,原发性mm,复发mM和药物抗性mm。 Umap:均匀的歧管近似和投影; PT:患者我们使用无监督的聚类和均匀的歧管近似和投影(UMAP)专注于B细胞,T细胞和骨髓细胞。 〜(6)首先,根据MS4A1,CD19,SDC1和MKI67的基因表达,将B细胞聚集成12个簇或四个亚组(图2A和B;表S3)。簇1,3,5和7主要富集耐药基团,簇1和7是具有高表达MKI67(图2b和c)的增殖/循环细胞,表明B细胞增殖可能有助于进展mm的耐药性。此外,我们计算了大规模的染色体拷贝数变化(CNV),以将恶性B细胞与正常细胞区分开。 〜(7)耐药MM在组中显示出显着的CNV水平(图?2D)。有趣的是,在耐药mM中显着富集的群体5恶性B细胞(p?& 05,χ〜(2)试验)(图?2c)表现出高CNV水平(图?2D和e)暗示群体5b恶性细胞是耐药性的恶性细胞的主要来源。此外,我们专注于簇5并通过耐药MM与原发生物的比较来鉴定DEG(图2F;表S4),并在该亚群中发现了几种标记基因,包括CD27。通过命令这些细胞重建伪时间轨迹,〜(8)我们观察到簇5细胞分叉2分支,耐药MM和复发的mm,表明这两个MM阶段的明显细胞分化路径(图?2g) 。重要的是,我们确定了与耐药性正相关的CCl4,TNFRSF17,LMA2和MZB1的新型基因(图2h)。一定,这些基因表达更高的患者[即CCl4(p?=β.017),TNFRSF17(P?=α.0082),LMA2(P?= 025)和MZB1(P?= ?. 016)]预后的预后差(图Δ2i)。该数据还支持表达CCL4,TNFRSF17,LMA2和MZB1的簇5细胞有助于耐药性。图2中B细胞的转录景观MM。 (a)UMAP图表明B细胞中细胞亚型的鉴定。 (b)散点图显示B细胞中标记基因的表达; (c)在不同条件下B细胞中细胞亚型的细胞型比例,包括对照组,原发性mm,复发mM和药物抗性mm。 (d)热图显示8名患者的B细胞大规模CNV。红颜色代表高CNV水平,蓝色代表低CNV水平。 (e)在不同条件下的恶性细胞分布,包括对照组,原代MM,复发MM和耐药MM。 (f)沿恶性进展的差异表达基因谱。 (g)伪时间

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号