首页> 外文期刊>Physical Review X >Improved Thermal Area Law and Quasilinear Time Algorithm for Quantum Gibbs States
【24h】

Improved Thermal Area Law and Quasilinear Time Algorithm for Quantum Gibbs States

机译:Quantum Gibbs状态的改进的热面积法和Quasilinear时间算法

获取原文
           

摘要

One of the most fundamental problems in quantum many-body physics is the characterization of correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor network approximations to thermal states with a bond dimension growing polynomially with the system size. In the regime of sufficiently low temperatures, which is crucially important for practical applications, the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for generic many-body systems on lattices. We improve the temperature dependence from the original O ( β ) to O ( β 2 / 3 ) up to a logarithmic factor, thereby suggesting subballistic propagation of entanglement by imaginary-time evolution. This qualitatively differs from the real-time evolution, which usually induces linear growth of entanglement. We also prove analogous bounds for the Rényi entanglement of purification and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential function which provides a relationship between the imaginary-time evolution and random walks. Moreover, for one-dimensional (1D) systems with n spins, we prove that the Gibbs state is well approximated by a matrix product operator with a sublinear bond dimension for β = o [ log ( n ) ] . This proof allows us to rigorously establish, for the first time, a quasilinear time classical algorithm for constructing a matrix product state representation of 1D quantum Gibbs states at arbitrary temperatures of β = o [ log ( n ) ] . Our new technical ingredient is a block decomposition of the Gibbs state that bears a resemblance to the decomposition of real-time evolution given by Haah et?al. [ Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, New York, 2018), pp.?350–360].
机译:量子多体物理中最基本的问题之一是热状态之间的相关性的表征。特别相关的是热面积法,其使张量网络近似与热状态合理,其中粘合尺寸与系统尺寸生长多元化。在足够低的温度的方案中,对于实际应用至关重要,现有技术不会产生最佳范围。在这里,我们提出了一种新的热面积法,该法律适用于晶格上的通用许多身体系统。我们将原始O(β)到O(β2/ 3)提高到对数因子的温度依赖性,从而暗示通过假想时间进化的缠结的替代传播。这种定性地与实时进化不同,这通常会引起缠结的线性生长。我们还证明了Rényi纠缠的类似界限和形成的缠结。我们的分析基于对指数函数的多项式近似,该指数函数提供了虚拟时间演进和随机散步之间的关系。此外,对于具有N个旋转的一维(1D)系统,我们证明GIBBS状态通过矩阵产品操作员具有很好的近似,具有β= O [LOG(N)]的载载键尺寸。本证明允许我们首次严格建立用于构建β= O [log(n)]的任意温度的1d量子gibbs状态的矩阵产品状态表示的准线性时间经典算法。我们的新技术成分是GIBBS状态的块分解,其与Haah et?al给出的实时演进的分解相似之处。 [2018年IEEE第59届计算机科学基金会年度研讨会(FOCS)(IEEE,纽约,2018),PP.750-360]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号