首页> 外文期刊>Physical Review X >Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20?GHz
【24h】

Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20?GHz

机译:电气驱动的微腔激子 - 极性ophotoMenchics 20?GHz

获取原文
获取外文期刊封面目录资料

摘要

Microcavity exciton polaritons enable the resonant coupling of excitons and photons to vibrations in the super-high-frequency (SHF, 3–30?GHz) domain. We introduce here a novel platform for coherent SHF optomechanics based on the coupling of polaritons and electrically driven SHF longitudinal acoustic phonons confined in a planar Bragg microcavity. The highly monochromatic phonons with tunable amplitudes are excited over a wide frequency range by piezoelectric transducers, which also act as efficient phonon detectors with a very large dynamical range. The microcavity platform exploits the long coherence time of polaritons as well as their efficient coupling to phonons. Furthermore, an intrinsic property of the platform is the backfeeding of phonons to the interaction region via reflections at the sample boundaries, which leads to quality factor × frequency products ( Q × f ) exceeding 10 14 Hz as well as huge modulation amplitudes of the optical transition energies exceeding 8?meV. We show that the modulation is dominated by the phonon-induced energy shifts of the excitonic polariton component. Thus, the large modulation leads to a dynamical switching of light-matter nature of the particles from a mixed (i.e., polaritonic) one to photonlike and excitonlike states at frequencies up to 20?GHz. On the one hand, this work opens the way for electrically driven polariton optomechanics in the nonadiabatic, sideband-resolved regime of coherent control. Here, the bidirectionality of the transducers can be exploited for light-to-sound-to-rf conversion. On the other hand, the large phonon frequencies and Q × f products enable phonon control with optical readout down to the single-particle regime at relatively high temperatures (of 1?K).
机译:微胶囊激素极性恒星使激子和光子的共振耦合能够在超高频(SHF,3-30·GHz)域中的振动。我们在这里介绍一种基于极性子的耦合和电动SHF纵向声子宫内穿过平面布拉格微胶囊的电气驱动的SHF光学力学平台。具有可调谐振幅的高度单色声子被压电传感器在宽频范围内激发,这也充当具有非常大的动力范围的高效声子探测器。微腔平台利用Polaritons的长相干时间以及它们与声子的有效耦合。此外,平台的固有特性是通过样本边界的反射反射到相互作用区域的子宫内置,这导致质量因子×频率产品(Q×F)超过10 14 Hz,以及光学的巨大调制幅度过渡能量超过8?MEV。我们表明该调制由声音极化谐像组分的声子诱导的能量移位。因此,大型调制导致颗粒的灯具自然的动力切换,从混合(即偏光极)1到光子般的频率,并且在高达20≤GHz的频率下。一方面,这项工作开启了电驱动的极化极性光学力学在相干控制的非等压,边带分辨制度中的方式。这里,可以利用换能器的双向用于光到RF转换。另一方面,大声子频率和Q×F产品使光学读出使光学读出在相对高的温度(1Ωk)下的单粒子制度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号