首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Snow water equivalents exclusively from snow depths and their temporal changes: the Δ snow model
【24h】

Snow water equivalents exclusively from snow depths and their temporal changes: the Δ snow model

机译:雪水当量完全来自雪深及其时间变化:δ雪模型

获取原文
       

摘要

Reliable historical manual measurements of snow depths are available for many years, sometimes decades, across the globe, and increasingly snow depth data are also available from automatic stations and remote sensing platforms. In contrast, records of snow water equivalent?(SWE) are sparse, which is significant as SWE is commonly the most important snowpack feature for hydrology, climatology, agriculture, natural hazards, and other fields. Existing methods of modeling SWE either rely on detailed meteorological forcing being available or are not intended to simulate individual SWE values, such as seasonal “peak SWE”. Here we present a new semiempirical multilayer model, Δ snow , for simulating SWE and bulk snow density solely from a regular time series of snow depths. The model, which is freely available as an R ?package, treats snow compaction following the rules of Newtonian viscosity, considers errors in measured snow depth, and treats overburden loads due to new snow as additional unsteady compaction; if snow is melted, the water mass is stepwise distributed from top to bottom in the snowpack. Seven model parameters are subject to calibration. Snow observations of 67?winters from 14?stations, well-distributed over different altitudes and climatic regions of the Alps, are used to find an optimal parameter setting. Data from another 71?independent winters from 15?stations are used for validation. Results are very promising: median bias and root mean square error for SWE are only ?3.0 ?and 30.8?kg?m ?2 , and +0.3 ?and 36.3?kg?m ?2 for peak SWE, respectively. This is a major advance compared to snow models relying on empirical regressions, and even sophisticated thermodynamic snow models do not necessarily perform better. As such, the new model offers a means to derive robust SWE estimates from historical snow depth data and, with some modification, to generate distributed SWE from remotely sensed estimates of spatial snow depth distribution.
机译:可靠的历史手动测量雪深度可获得多年,有时几十年来,全球和越来越多的雪深度数据也可从自动站和遥感平台获得。相比之下,雪水当量的记录(SWE)是稀疏的,这是显着的,因为SWE通常是水文,气候学,农业,自然灾害和其他领域最重要的积雪特征。依赖于详细的气象迫使可用或不打算模拟单独的SWE值,例如季节性“峰值SWE”。在这里,我们介绍了一个新的半透明多层模型,δ雪,用于模拟SWE和散装雪密度,完全来自常规时间系列的雪深。该模型作为r?封装可自由用?封装,在牛顿粘度的规则之后对待雪压实,认为在测量的雪深度中的误差,并且由于新的雪而治疗覆盖载荷,作为额外的不稳定压实;如果雪被熔化,水质量逐步地分布在积雪中的顶部到底部。七个模型参数受校准。 67的雪观察结果来自14个?站点的冬天,分布在不同的海拔高度和阿尔卑斯山的气候区域,用于找到最佳参数设置。来自另一个71的数据?从15个出发的独立冬天?用于验证。结果非常有前途:SWE的中位数和均方根均匀误差仅为?3.0?和30.8?kg?m?2,和+ 0.3?和36.3?kg?m?2用于峰值SWE。与依赖经验回归的雪模型相比,这是一个主要的提前,甚至更复杂的热力学雪模型并不一定表现更好。因此,新模型提供了一种从历史雪深度数据中获得强大的SWE估计的方法,并且在一些修改中,从远程感测的空间雪深度分布估计产生分布式SWE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号