首页> 外文期刊>The Cryosphere >ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model
【24h】

ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model

机译:使用社区冰板模型的海洋强制南极冰冰板演进的基于ismip6的投影

获取原文
       

摘要

The future retreat rate for marine-based regions of the Antarctic Ice Sheet is one of the largest uncertainties in sea-level projections. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) aims to improve projections and quantify uncertainties by running an ensemble of ice sheet models with atmosphere and ocean forcing derived from global climate models. Here, the Community Ice Sheet Model (CISM) is used to run ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution. Using multiple combinations of sub-ice-shelf melt parameterizations and calibrations, CISM is spun up to steady state over many millennia. During the spin-up, basal friction parameters and basin-scale thermal forcing corrections are adjusted to optimize agreement with the observed ice thickness. The model is then run forward for 550 years, from 1950–2500, applying ocean thermal forcing anomalies from six climate models. In all simulations, the ocean forcing triggers long-term retreat of the West Antarctic Ice Sheet, especially in the Filchner–Ronne and Ross sectors. Mass loss accelerates late in the 21st century and then rises steadily for several centuries without leveling off. The resulting ocean-forced sea-level rise at year 2500 varies from about 150 to 1300?mm, depending on the melt scheme and ocean forcing. Further experiments show relatively high sensitivity to the basal friction law, moderate sensitivity to grid resolution and the prescribed collapse of small ice shelves, and low sensitivity to the stress-balance approximation. The Amundsen sector exhibits threshold behavior, with modest retreat under many parameter settings but complete collapse under some combinations of low basal friction and high thermal forcing anomalies. Large uncertainties remain, as a result of parameterized sub-shelf melt rates, simplified treatments of calving and basal friction, and the lack of ice–ocean coupling.
机译:南极冰盖的海洋为基础地区的未来退缩率是海平面预测中最大的不确定性之一。 CMIP6(ISMIP6)的冰块模型互通项目旨在通过运行具有源自全球气候模型的大气和海洋迫使的冰板模型来改善预测和量化不确定性。在这里,社区冰板模型(Cism)用于运行基于ISMIP6的海洋强制南极冰冰片进化的投影。使用多重岩石货架熔体参数化和校准的多种组合,Cism在许多千年中旋转到稳定状态。在旋转期间,调整基础摩擦参数和盆地凝固矫正校正以优化与观察到的冰厚度的协议。然后,该模型从1950年到1950年开始,从1950年到550年运行,从六种气候模型中施加海洋热迫使异常。在所有模拟中,海洋强迫西南冰板的长期撤退,特别是在Filchner-Ronne和Ross部门。大规模损失在21世纪晚期加速,然后在没有平衡的情况下稳步上升。由此产生的海洋迫使海平面上升到2500年的大约150到1300?mm,具体取决于熔体方案和海洋强迫。进一步的实验表明对基础摩擦法的敏感性相对较高,对电网分辨率的适度灵敏度以及小型冰架的规定崩溃,以及对压力平衡近似的低敏感性。 Amundsen扇区展示了阈值行为,在许多参数设置下具有适度的撤退,但在低基础摩擦和高热迫使异常的某些组合下完全崩溃。由于参数化的子货架熔体率,对水平和基础摩擦的简化处理以及缺乏冰海耦合,因此仍然存在大的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号