首页> 外文期刊>Microbial Cell Factories >Increasing ATP turnover boosts productivity of?2,3-butanediol synthesis in Escherichia coli
【24h】

Increasing ATP turnover boosts productivity of?2,3-butanediol synthesis in Escherichia coli

机译:提高ATP变化促进了大肠杆菌中的2,3-丁二醇合成的生产力

获取原文
           

摘要

The alcohol 2,3-butanediol (2,3-BDO) is an important chemical and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, respectively) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future.
机译:醇2,3-丁二醇(2,3-BDO)是一个重要的化学和大肠杆菌生产者菌株,最近被设计为BIO的2,3-BDO的生物生产。但是,现实应用需要进一步改进。在这里,我们报告通过过度表达ATP水解F1部分的ATP酶的基因来实施强制ATP浪费,导致在大肠杆菌生产者菌株中的2,3-BDO合成的产量和生产率的显着增加。各种栽培条件。我们研究了有氧和微生物条件以及生长耦合和生长脱钩的生产情景。在所有这些情况下,与对照菌株相比,在ATP酶应变中,在ATP酶应变中,特定的底物摄取和2,3-BDO合成速率(分别高达六倍和十倍)。然而,有氧条件通常仅能够降低2,3-BDO产量,而微生物条件下的高产物产量伴随着低产量。基于这些发现,我们最终设计并验证了一种三阶段的方法,以实现葡萄糖至2,3-BDO的最佳转化,这使得能够与相对高的产量组合使用。 ATPase菌株再次表现出优异的性能,并完成了对照菌株的两倍的过程,并且具有更高的2,3- bdo产量。我们的结果表明,强制ATP浪费作为通用代谢工程战略的高潜力,我们预计将来会有更多的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号