首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data
【24h】

Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data

机译:应用机器学习方法使用地静止运营环境卫星-16(GOVE-16)高级基线成像器(ABI)数据检测对流

获取原文
           

摘要

An ability to accurately detect convective regions is essential for initializing models for short-term precipitation forecasts. Radar data are commonly used to detect convection, but radars that provide high-temporal-resolution data are mostly available over land, and the quality of the data tends to degrade over mountainous regions. On the other hand, geostationary satellite data are available nearly anywhere and in near-real time. Current operational geostationary satellites, the Geostationary Operational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1?min data, however, allow us to observe convection from visible and infrared data even without vertical information of the convective system. Existing detection algorithms using visible and infrared data look for static features of convective clouds such as overshooting top or lumpy cloud top surface or cloud growth that occurs over periods of 30?min to an hour. This study represents a proof of concept that artificial intelligence (AI) is able, when given high-spatial- and high-temporal-resolution data from GOES-16, to learn physical properties of convective clouds and automate the detection process. A neural network model with convolutional layers is proposed to identify convection from the high-temporal resolution GOES-16 data. The model takes five temporal images from channel?2 (0.65? μ m) and 14 (11.2? μ m) as inputs and produces a map of convective regions. In order to provide products comparable to the radar products, it is trained against Multi-Radar Multi-Sensor (MRMS), which is a radar-based product that uses a rather sophisticated method to classify precipitation types. Two channels from GOES-16, each related to cloud optical depth (channel?2) and cloud top height (channel?14), are expected to best represent features of convective clouds: high reflectance, lumpy cloud top surface, and low cloud top temperature. The model has correctly learned those features of convective clouds and resulted in a reasonably low false alarm ratio (FAR) and high probability of detection (POD). However, FAR and POD can vary depending on the threshold, and a proper threshold needs to be chosen based on the purpose.
机译:准确检测对流区域的能力对于初始化短期降水预测的模型至关重要。雷达数据通常用于检测对流,但提供高时间分辨率数据的雷达主要可在陆地上获得,并且数据的质量趋于降低山区。另一方面,地球静止卫星数据几乎可以在任何地方和近乎实时使用。目前的运营地球静止卫星,地球静止运营环境卫星-16(GOVE-16)和卫星-17,提供了高空间和高时分辨率的数据,但仅提供云顶部特性;但是,即使没有对流系统的垂直信息,也允许我们遵守来自可见和红外数据的对流。现有的检测算法使用可见和红外数据查找对流云的静态特征,如过冲顶部或块状云顶表面或云增长,超过30?min的时间为30?min。该研究代表了人工智能(AI)能够,当给定来自GOS-16的高空间和高时分辨率数据时,学习对流云的物理性质并自动化检测过程的概念证据。提出了一种具有卷积层的神经网络模型,用于识别来自高时分辨率的对流 - 16数据。该模型从通道α2(0.65Ωμm)和14(11.2μm)中的五个时间图像作为输入,并产生对流区域的图。为了提供与雷达产品相当的产品,它是针对多雷达多传感器(MRMS)的培训,这是一种基于雷达的产品,它使用相当复杂的方法来分类降水类型。来自GOY-16的两个通道,每个通道与云光学深度(频道?2)和云顶部高度(通道?14)相关,预计最佳代表对流云的特征:高反射率,块状云顶表面,低云顶温度。该模型已经正确了解了对流云的那些特征,并导致了合理低的误报例(远)和检测概率(POD)。然而,远距离和POD可以根据阈值而变化,并且需要基于此目的选择适当的阈值。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号