首页> 外文期刊>Atmospheric Measurement Techniques >A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data
【24h】

A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data

机译:使用SOFI Pro的时间依赖性因子简档和不确定性评估的长期来源分配的一种新方法:应用于1年的有机气溶胶数据

获取原文
       

摘要

A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) is presented. The method is implemented within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF solver. The technique is applied to a 1-year aerosol chemical speciation monitor (ACSM) dataset from downtown Zurich, Switzerland. The measured organic aerosol mass spectra were analyzed by PMF using a small (14? d ) and rolling PMF window to account for the temporal evolution of the sources. The rotational ambiguity is explored and the uncertainties of the PMF solutions were estimated. Factor–tracer correlations for averaged seasonal results from the rolling window analysis are higher than those retrieved from conventional PMF analyses of individual seasons, highlighting the improved performance of the rolling window algorithm for long-term data. In this study four to five factors were tested for every PMF window. Factor profiles for primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning (BBOA) were constrained. Secondary organic aerosol was represented by either the combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA, respectively) or by a single OOA when this separation was not robust. This scheme led to roughly 40?000 PMF runs. Full visual inspection of all these PMF runs is unrealistic and is replaced by predefined user-selected criteria, which allow factor sorting and PMF run acceptance/rejection. The selected criteria for traffic (HOA) and BBOA were the correlation with equivalent black carbon from traffic (eBC tr ) and the explained variation of m / z ?60, respectively. COA was assessed by the prominence of a lunchtime concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated based on the fractions of m / z ?43 and?44 in their respective factor profiles. Seasonal pre -tests revealed a non-continuous separation of OOA into SV-OOA and LV-OOA, in particular during the warm seasons. Therefore, a differentiation between four-factor solutions (HOA, COA, BBOA and OOA) and five-factor solutions (HOA, COA, BBOA, SV-OOA and LV-OOA) was also conducted based on the criterion for SV-OOA. HOA and COA contribute between 0.4–0.7? μg?m ?3 (7.8?%–9.0?%) and 0.7–1.2? μg?m ?3 (12.2?%–15.7?%) on average throughout the year, respectively. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6? μg?m ?3 , 12.0?%), slightly higher mean concentrations during spring and fall (1.0 and 1.5? μg?m ?3 , or 15.6?% and 18.6?%, respectively), and the highest mean concentrations during winter (1.9? μg?m ?3 , 25.0?%). In summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4? μg?m ?3 (26.5?%) and 2.2? μg?m ?3 (40.3?%), respectively. For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3 to 1.1? μg?m ?3 (3.4?%–15.9?%), from 0.6 to 2.2? μg?m ?3 (7.7?%–33.7?%) and from 0.9 to 3.1? μg?m ?3 (13.7?%–39.9?%), respectively. The relative PMF errors modeled for this study for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA are on average ±34? % , ±27? % , ±30? % , ±11? % , ±25? % and ±12? % , respectively.
机译:呈现了使用正矩阵分解(PMF)执行长期源分摊(SA)的新方法。该方法是在SOFI Pro软件包中实现的,并使用MultiLinear Engine(ME-2)作为PMF求解器。该技术应用于瑞士市中心的1年气溶胶化学品质监测(ACSM)数据集。通过PMF使用小(14℃)和滚动PMF窗口来分析测量的有机气溶胶质谱,以解释这些来源的时间演变。探索了旋转模糊性,估计了PMF解决方案的不确定性。因子示踪器与滚动窗口分析的平均季节性结果的相关性高于从个别季节的传统PMF分析中检索的那些,突出了滚动窗口算法的长期数据的改进性能。在这项研究中,每个PMF窗口测试了四到五个因素。受到交通(HOA),烹饪(COA)和生物质燃烧(BBOA)的原发性有机气溶胶的因子谱。当该分离不稳健时,通过半挥发性和低挥发性有机气溶胶(SV-OOA和LV-OOA)的组合或通过单一OOA表示二次有机气溶胶。该方案导致了大约40 000 PMF运行。完全目视检查所有这些PMF运行是不现实的,并且由预定义的用户选择的标准替换,允许因子排序和PMF运行验收/拒绝。交通(HOA)和BBOA的所选标准是与来自交通(EBC TR)的等效黑碳的相关性,并且分别解释了M / Z?60的解析。通过在日期周期内的午餐时间浓度峰值的突出来评估COA。基于它们各自的因子谱中的M / Zα43和α44的级分来评估SV-OOA和LV-OOA。季节性预测试揭示了OOA进入SV-OOA和LV-OOA的非连续分离,特别是在温暖的季节。因此,还基于SV-OOA的标准进行了四因素溶液(HOA,COA,BBOA和OOA)和五因子溶液(HOA,COA,BBOA,SV-OOA和LV-OOA)之间的差异。 HOA和COA贡献0.4-0.7? μg?m?3(7.8〜% - 9.0〜0.%)和0.7-1.2? μg?3(12.2?%-15.7?%)分别平均全年。 Bboa在夏季(0.6≤μg≤M≤3,12.0μg≤3,12.0μg≤3,12.0μm≤3,12.0μg),略高的平均浓度(1.0和1.5≤m≤m≤3,或15.6Ω·3,或15.6Ω·3,或15.6Ω·3,或15.6Ω·m≤3,或15.6Ω·m≤3,或15.6Ω分别为18.6?%)和冬季最高的平均浓度(1.9≤μg≤M≤3,25.0?%)。夏季,OOA分为SV-OOA和LV-OOA,平均浓度为1.4? μg?3(26.5?%)和2.2? μg?3(40.3〜%)。对于剩下的季节,SV-OOA,LV-OOA和OOA的季节性浓度范围为0.3至1.1? μg?m?3(3.4?% - 15.9〜9℃),从0.6到2.2? μg?3(7.7〜% - 33.7?%)和0.9至3.1? μg?3(13.7〜%-39.9?%)。对该研究的HOA,COA,BBOA,LV-OOA,SV-OOA和OOA建模的相对PMF误差平均平均±34? %,±27? %,±30? %,±11? %,±25? %和±12? % , 分别。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号