首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues
【24h】

Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues

机译:CFC-11,CFC-12和CFC-113同位素的平流层碳同位素分级和对流层历史

获取原文
       

摘要

We present novel measurements of the carbon isotope composition of CFC-11 (CCl 3 F), CFC-12 (CCl 2 F 2 ), and CFC-113 (CF 2 ClCFCl 2 ), three atmospheric trace gases that are important for both stratospheric ozone depletion and global warming. These measurements were carried out on air samples collected in the stratosphere – the main sink region for these gases – and on air extracted from deep polar firn snow. We quantify, for the first time, the apparent isotopic fractionation, ? app ( 13 C) , for these gases as they are destroyed in the high- and mid-latitude stratosphere: ? app (CFC-12, high-latitude)? = ( - 20.2 ± 4.4 ) ?‰, and ? app (CFC-113, high-latitude)? = ( - 9.4 ± 4.4 ) ?‰, ? app (CFC-12, mid-latitude)? = ( - 30.3 ± 10.7 ) ?‰, and ? app (CFC-113, mid-latitude)? = ( - 34.4 ± 9.8 ) ?‰. Our CFC-11 measurements were not sufficient to calculate ? app (CFC-11), so we instead used previously reported photolytic fractionation for CFC-11 and CFC-12 to scale our ? app (CFC-12), resulting in ? app (CFC-11, high-latitude)? = ( - 7.8 ± 1.7 ) ?‰ and ? app (CFC-11, mid-latitude)? = ( - 11.7 ± 4.2 ) ?‰. Measurements of firn air were used to construct histories of the tropospheric isotopic composition, δ T ( 13 C) , for CFC-11 (1950s to 2009), CFC-12 (1950s to 2009), and CFC-113 (1970s to 2009), with δ T ( 13 C) increasing for each gas. We used ? app (high-latitude), which was derived from more data, and a constant isotopic composition of emissions, δ E ( 13 C) , to model δ T ( 13 C , CFC-11), δ T ( 13 C , CFC-12), and δ T ( 13 C , CFC-113). For CFC-11 and CFC-12, modelled δ T ( 13 C) was consistent with measured δ T ( 13 C) for the entire period covered by the measurements, suggesting that no dramatic change in δ E ( 13 C , CFC-11) or δ E ( 13 C , CFC-12) has occurred since the 1950s. For CFC-113, our modelled δ T ( 13 C , CFC-113) did not agree with our measurements earlier than 1980. This discrepancy may be indicative of a change in δ E ( 13 C , CFC-113). However, this conclusion is based largely on a single sample and only just significant outside the 95?% confidence interval. Therefore more work is needed to independently verify this temporal trend in the global tropospheric 13 C isotopic composition of CFC-113. Our modelling predicts increasing δ T ( 13 C , CFC-11), δ T ( 13 C , CFC-12), and δ T ( 13 C , CFC-113) into the future. We investigated the effect of recently reported new CFC-11 emissions on background δ T ( 13 C , CFC-11) by fixing model emissions after 2012 and comparing δ T ( 13 C , CFC-11) in this scenario to the model base case. The difference in δ T ( 13 C , CFC-11) between these scenarios was 1.4?‰ in 2050. This difference is smaller than our model uncertainty envelope and would therefore require improved modelling and measurement precision as well as better quantified isotopic source compositions to detect.
机译:我们提出了CFC-11(CCl 3 F),CFC-12(CCl 2 F 2)和CFC-113(CF 2 CLCFCL 2)的三种大气痕量气体的新型测量,这对于两种平流层很重要臭氧消耗和全球变暖。这些测量在平流层中收集的空气样本上进行 - 用于这些气体的主水槽区域 - 以及从深处极地雪中提取的空气。我们是第一次表达同位素分级的量化,?应用(13 c),对于这些气体,因为它们在高纬度和中纬度平流层中被销毁:? APP(CFC-12,高纬度)? =( - 20.2±4.4)?‰,和? APP(CFC-113,高纬度)? =( - 9.4±4.4)?‰,? APP(CFC-12,中纬)? =( - 30.3±10.7)?‰,和? APP(CFC-113,中纬)? =( - 34.4±9.8)?‰。我们的CFC-11测量不足以计算? APP(CFC-11),所以我们先前已经报道过CFC-11和CFC-12的光解分馏,以缩放我们的?应用程序(CFC-12),导致? APP(CFC-11,高纬度)? =( - 7.8±1.7)?‰和? APP(CFC-11,中纬)? =( - 11.7±4.2)?‰。 FiRN Air的测量用于构建对流层同位素组合物,δT(13c)的历史,用于CFC-11(2050年至2009),CFC-12(20世纪50年代至2009),以及CFC-113(20世纪70年代至2009) ,δT(13c)对每个气体的增加。我们用了 ?应用(高纬度),其来自更多数据,以及排放的恒定同位素组成,δe(13c),δt(13c,cfc-11),δt(13c,cfc- 12)和ΔT(13c,CFC-113)。对于CFC-11和CFC-12,模拟的δT(13c)与测量覆盖的整个时段的测量δt(13c)一致,表明δe(13 c,cfc-11自20世纪50年代以来,发生了自2​​0世纪50年代以来发生了ΔE(13℃,CFC-12)。对于CFC-113,我们建模的δT(13c,CFC-113)与早于1980年的测量不一致。该差异可以指示δe(13c,CFC-113)的变化。然而,这一结论主要基于单一样本,仅在95倍置信区间外面只有显着性。因此,需要更多的工作来独立地验证CFC-113的全球对流层13 C同位素组成中的这种时间趋势。我们的建模预测将来增加ΔT(13c,cfc-11),δt(13c,cfc-12)和δt(13c,cfc-113)。我们通过在2012年之后固定模型排放并将这种情况进行比较模型基础案例,调查了最近报告了新的CFC-11排放对背景ΔT(13c,CFC-11)进行了背景ΔT(13c,CFC-11)的影响。 。这些方案之间的ΔT(13c,CFC-11)的差异为1.4?‰在2050年。这种差异小于我们的模型不确定度封闭,因此需要改善建模和测量精度以及更好的量化同位素源组合物以及更好的量化同位素源组合物探测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号