首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
【24h】

Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison

机译:从反应气体和气溶胶排放的有效辐射迫使迫使 - 一种多模型比较

获取原文
           

摘要

This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NO X , volatile organic compounds (VOCs; including CO), SO 2 , NH 3 , black carbon, organic carbon, and concentrations of methane, N 2 O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available. The 1850 to 2014 multi-model mean ERFs ( ± standard deviations) are ?1.03 ? ± ?0.37?W?m ?2 for SO 2 emissions, ?0.2 5? ± ?0.09?W?m ?2 for organic carbon (OC), 0.15? ± ?0.17?W?m ?2 for black carbon (BC) and ?0.07 ? ± ?0.01?W?m ?2 for NH 3 . For the combined aerosols (in the piClim-aer experiment) it is ?1.01 ? ± ?0.25?W?m ?2 . The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67? ± ?0.17?W?m ?2 for methane (CH 4 ), 0.26? ± ?0.07?W?m ?2 for nitrous oxide (N 2 O) and 0.12? ± ?0.2?W?m ?2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NO x ), volatile organic compounds and both together (O 3 ) lead to ERFs of 0.14? ± ?0.13, 0.09? ± ?0.14 and 0.20? ± ?0.07?W?m ?2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.
机译:本文量化了前天性(1850)至现今(2014)的无效辐射强制(ERF)的无X,挥发性有机化合物(VOCS;包括CO),SO 2,NH 3,黑碳,有机使用CMIP6型号,碳,和甲烷,N 2 O和臭氧耗尽卤素的浓度。反应性物质的浓度和排放变化会导致辐射活性物种组成的多种变化:对流层臭氧,平坦散臭室,平流层水蒸气,二级无机和有机气溶胶和甲烷。在可能的情况下,我们可以将每个发出的物种从组成变化的贡献中分解ERF。为每个参与AerchemMip实验的每个模型计算ERF,作为CMIP6项目的一部分,其中相关的模型输出可用。 1850年至2014年多模型平均ERF(±标准偏差)是?1.03? ±0.37?W?M?2为SO 2排放,?0.2 5? ±0.09≤0.09?2用于有机碳(OC),0.15? ±0.17?w?2为黑碳(BC)和?0.07? ±0.01≤0.01≤2.3。对于组合的气溶胶(在Piclim-Aer实验中)是?1.01? ±0.25?w?m?2。用于反应性井中的温室气体的多模型装置(包括对臭氧和气溶胶化学的任何影响)为0.67? ±0.17?W?2用于甲烷(CH 4),0.26? ±0.07?W≤2.氧化二氮(N 2 O)和0.12? ±0.2?W≤2.对于臭氧耗尽卤碳(HC)。臭氧前体氮氧化物(NO X),挥发性有机化合物和两者(O 3)的排放导致ERF为0.14? ±0.13,0.09? ±0.14和0.20?分别为±0.07?0.07?m?2。针对不同模型计算的ERF的差异反映了其气溶胶和化学方案的复杂性的差异,特别是在甲烷的情况下,对流层化学捕获从臭氧产生的迫使迫使迫使。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号