首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model
【24h】

Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model

机译:目前和未来的气溶胶对甘蓝型气候变化的影响,甘尔-2.1地球系统模型

获取原文
           

摘要

The Arctic is warming 2 to 3?times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic ( 60 ° ?N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate ( SO 4 2 - ), by more than 50?%, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO 4 2 - burdens decrease significantly in all simulations by 10?%–60?% following the reductions of 7?%–78?% in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions ( RF ARI ) of - 0.39 ± 0.01 ? W?m ?2 , which is ?0.08 ? W?m ?2 larger than the 1990–2010 mean forcing ( ?0.32 ? W?m ?2 ), of which - 0.24 ± 0.01 ? W?m ?2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RF ARI of ?0.35 to ?0.40 ? W?m ?2 for the same period, which is ?0.01 to ?0.06 ? W?m ?2 larger than the 1990–2010 mean forcing of ?0.35 ? W?m ?2 . The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RF ARI , while scenarios with medium to large emission mitigations led to increases in the negative RF ARI , mainly due to the decrease in the positive BC forcing and the decrease in the negative SO 4 2 - forcing. The anthropogenic aerosols accounted for ?0.24 to ?0.26 ? W?m ?2 of the net RF ARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6? ° C in the Eclipse ensemble and 1.9 to 2.6? ° C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change.
机译:北极正在比全球平均水平更快地升温2至3?部分原因是由于包括气溶胶在内的短期气候攻击者(SLCFS)的变化。为了研究大气气溶胶在这种变暖中的影响,最近(1990-2014)和未来(2015-2050)模拟已经使用GiS-E2.1地球系统模型进行了研究气溶胶负担及其辐射和气候影响北极(& 60°N),使用来自Eclipse V6B的人为排放和耦合模型相互比较项目6(CMIP6)数据库,而全球年度平均温室气体浓度在所有模拟中进行规定并保持固定。结果表明,仿真已经低估了观察到的表面气溶胶水平,特别是黑碳(Bc)和硫酸盐(SO 4 2 - ),超过50μm,为大气仿真计算的最小偏差,其中风闪烁着重新分析数据。与Eclipse模拟相比,CMIP6在再现观察到的表面气溶胶浓度和气候参数时略好转。此外,与大气模拟相比,气溶胶水平的大气和海洋完全耦合的仿真在唯一的情况下,仿真在不扼杀的情况下,气溶胶水平略微较小。北极BC,有机气溶胶(OA)等2 - 负担在排放投影中减少7?% - 78?%后,所有模拟,在排放投影中减少7倍的10?% - 60?%,蚀降低显示与CMIP6合奏相比,在北极气溶胶中负担。对于2030-2050期,Eclipse集合模拟由于气溶胶 - 辐射相互作用(RF ARI)为0.39±0.01的辐射强制w?m?2,哪个?0.08? w?m?2大于1990-2010的平均迫使(?0.32?w?m≤2),其中 - 0.24±0.01? w?m?2归因于人为气溶胶。 CMIP6集合模拟了一个射频的射频?0.35至0.40? w?m?2在同一时期,哪个是?0.01〜0.06? w?m?2大于1990-2010的平均迫使?0.35? w?m?2。没有缓解(最糟糕的情况)没有减缓的情况导致RF ARI的变化非常小,而具有媒介到大量排放的情景导致负射频ARI增加,主要是由于阳性BC强制下降并且减少了负的所以4 2 - 迫使。人为气溶胶占?0.24至0.26? w?m?2在2030 - 2015年期间的净射频ARI,分别在Eclipse和CMIP6集合中。最后,所有模拟都显示出在整个仿真期间北极表面空气温度的增加。到2050年,投射表面空气温度将增加2.4至2.6? °C在Eclipse Ensemble和1.9到2.6? °C在CMIP6合奏中,与1990-2010的平均值相比。总体而言,结果表明,与具有较小排放减少的情况相比,即使具有最大排放减排的情况也导致对未来北极地表空气温度和海冰范围的影响,暗示温室排放的减少仍然需要减轻气候变化。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号